Tomographic measurement of the intergalactic gas pressure through galaxy–tSZ cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 491:4 (2020) 5464-5480

Authors:

Nick Koukoufilippas, David Alonso, Maciej Bilicki, John A Peacock

Abstract:

ABSTRACT We cross-correlate maps of the thermal Sunyaev–Zeldovich (tSZ) Compton-y parameter published by Planck with the projected distribution of galaxies in a set of low-redshift tomographic bins. We use the nearly full-sky 2MASS Photometric Redshift and WISE × SuperCOSMOS public catalogues, covering the redshift range z ≲ 0.4. Our measurements allow us to place constraints on the redshift dependence of the mass–observable relation for tSZ cluster count analyses in terms of the so-called hydrostatic mass bias parameter $1-b_{\scriptscriptstyle \rm H}$. These results can also be interpreted as measurements of the bias-weighted average gas pressure 〈bPe〉 as a function of redshift, a quantity that can be related to the thermodynamics of gas inside haloes and used to constrain energy injection processes. We measure $1-b_{\scriptscriptstyle \rm H}$ with $\sim \!13{{\ \rm per\ cent}}$ precision in six equispaced redshift bins, and find no evidence for a redshift-dependent mass bias parameter, in agreement with previous analyses. Our mean value of $1-b_{\scriptscriptstyle \rm H}= 0.59\pm 0.03$ is also in good agreement with the one estimated by the joint analysis of Planck cluster counts and cosmic microwave background anisotropies. Our measurements of 〈bPe〉, at the level of $\sim \!10{{\ \rm per\ cent}}$ in each bin, are the most stringent constraints on the redshift dependence of this parameter to date, and agree well both with previous measurements and with theoretical expectations from shock-heating models.

Prospects for Fundamental Physics with LISA

(2020)

Authors:

Enrico Barausse, Emanuele Berti, Thomas Hertog, Scott A Hughes, Philippe Jetzer, Paolo Pani, Thomas P Sotiriou, Nicola Tamanini, Helvi Witek, Kent Yagi, Nicolas Yunes, T Abdelsalhin, A Achucarro, KV Aelst, N Afshordi, S Akcay, L Annulli, KG Arun, I Ayuso, V Baibhav, T Baker, H Bantilan, T Barreiro, C Barrera-Hinojosa, N Bartolo, D Baumann, E Belgacem, E Bellini, N Bellomo, I Ben-Dayan, I Bena, R Benkel, E Bergshoefs, L Bernard, S Bernuzzi, D Bertacca, M Besancon, F Beutler, F Beyer, S Bhagwat, J Bicak, S Biondini, S Bize, D Blas, C Boehmer, K Boller, B Bonga, C Bonvin, P Bosso, G Bozzola, P Brax, M Breitbach, R Brito, M Bruni, B Brügmann, H Bulten, A Buonanno, AO Burke, LM Burko, C Burrage, F Cabral, G Calcagni, C Caprini, A Cárdenas-Avendaño, M Celoria, K Chatziioannou, D Chernoff, K Clough, A Coates, D Comelli, G Compère, D Croon, D Cruces, G Cusin, C Dalang, U Danielsson, S Das, S Datta, J de Boer, V De Luca, C De Rham, V Desjacques, K Destounis, F Di Filippo, A Dima, E Dimastrogiovanni, S Dolan, D Doneva, F Duque, R Durrer, W East, R Easther, M Elley, JR Ellis, R Emparan, JM Ezquiaga, M Fairbairn, S Fairhurst, HF Farmer, MR Fasiello, V Ferrari, PG Ferreira, G Ficarra, P Figueras, S Fisenko, S Foffa, N Franchini, G Franciolini, K Fransen, J Frauendiener, N Frusciante, R Fujita, J Gair, A Ganz, P Garcia, J Garcia-Bellido, J Garriga, R Geiger, C Geng, LÁ Gergely, C Germani, D Gerosa, SB Giddings, E Gourgoulhon, P Grandclement, L Graziani, L Gualtieri, D Haggard, S Haino, R Halburd, W-B Han, AJ Hawken, A Hees, IS Heng, J Hennig, C Herdeiro, S Hervik, JV Holten, CJD Hoyle, Y Hu, M Hull, T Ikeda, M Isi, A Jenkins, F Julié, E Kajfasz, C Kalaghatgi, N Kaloper, M Kamionkowski, V Karas, S Kastha, Z Keresztes, L Kidder, T Kimpson, A Klein, S Klioner, K Kokkotas, H Kolesova, S Kolkowitz, J Kopp, K Koyama, NV Krishnendu, JAV Kroon, M Kunz, O Lahav, A Landragin, RN Lang, C Le Poncin-Lafitte, J Lemos, B Li, S Liberati, M Liguori, F Lin, G Liu, FSN Lobo, R Loll, L Lombriser, G Lovelace, RP Macedo, E Madge, E Maggio, M Maggiore, S Marassi, P Marcoccia, C Markakis, W Martens, K Martinovic, CJAP Martins, A Maselli, S Mastrogiovanni, S Matarrese, A Matas, NE Mavromatos, A Mazumdar, PD Meerburg, E Megias, J Miller, JP Mimoso, L Mittnacht, MM Montero, B Moore, P Martin-Moruno, I Musco, H Nakano, S Nampalliwar, G Nardini, A Nielsen, J Novák, NJ Nunes, M Okounkova, R Oliveri, F Oppizzi, G Orlando, N Oshita, G Pappas, V Paschalidis, H Peiris, M Peloso, S Perkins, V Pettorino, I Pikovski, L Pilo, J Podolsky, A Pontzen, S Prabhat, G Pratten, T Prokopec, M Prouza, H Qi, A Raccanelli, A Rajantie, L Randall, G Raposo, V Raymond, S Renaux-Petel, A Ricciardone, A Riotto, T Robson, D Roest, R Rollo, S Rosofsky, JJ Ruan, D Rubiera-García, M Ruiz, M Rusu, F Sabatie, N Sago, M Sakellariadou, ID Saltas, L Sberna, B Sathyaprakash, M Scheel, P Schmidt, B Schutz, P Schwaller, L Shao, SL Shapiro, D Shoemaker, AD Silva, C Simpson, CF Sopuerta, A Spallicci, BA Stefanek, L Stein, N Stergioulas, M Stott, P Sutton, R Svarc, H Tagoshi, T Tahamtan, H Takeda, T Tanaka, G Tantilian, G Tasinato, O Tattersall, S Teukolsky, AL Tiec, G Theureau, M Trodden, A Tolley, A Toubiana, D Traykova, A Tsokaros, C Unal, CS Unnikrishnan, EC Vagenas, P Valageas, M Vallisneri, J Van den Brand, C Van den Broeck, M van de Meent, P Vanhove, V Varma, J Veitch, B Vercnocke, L Verde, D Vernieri, F Vernizzi, R Vicente, F Vidotto, M Visser, Z Vlah, S Vretinaris, S Völkel, Q Wang, Yu-Tong Wang, MC Werner, J Westernacher, RVD Weygaert, D Wiltshire, T Wiseman, P Wolf, K Wu, K Yamada, H Yang, L Yi, X Yue, D Yvon, M Zilhão, A Zimmerman, M Zumalacarregui

Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

JOURNAL OF LOW TEMPERATURE PHYSICS Springer Science and Business Media LLC 199:3-4 (2020) 1107-1117

Authors:

H Sugai, Par Ade, Y Akiba, D Alonso, K Arnold, J Aumont, J Austermann, C Baccigalupi, Aj Banday, R Banerji, Rb Barreiro, S Basak, J Beall, S Beckman, M Bersanelli, J Borrill, F Boulanger, Ml Brown, M Bucher, A Buzzelli, E Calabrese, Fj Casas, A Challinor, J-F Cliche, F Columbro

Abstract:

© 2020, The Author(s). Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

Kinematic unrest of low mass galaxy groups

(2020)

Authors:

G Gozaliasl, A Finoguenov, HG Khosroshahi, C Laigle, CC Kirkpatrick, K Kiiveri, J Devriendt, Y Dubois, J Ahoranta

The impact of AGN feedback on galaxy intrinsic alignments in the Horizon simulations

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2020) 4268-4282

Authors:

A Soussana, NE Chisari, S Codis, RS Beckmann, Y Dubois, JULIEN Devriendt, S Peirani, C Laigle, C Pichon, A Slyz

Abstract:

The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at z = 0 and z = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.