Calibrating photometric redshifts with intensity mapping observations

(2017)

Authors:

David Alonso, Pedro G Ferreira, Matt J Jarvis, Kavilan Moodley

No evidence for Population III stars or a Direct Collapse Black Hole in the z = 6.6 Lyman-$α$ emitter 'CR7'

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:1 (2017) 448-458

Authors:

Rebecca AA Bowler, Ross J McLure, James S Dunlop, Derek J McLeod, Elizabeth R Stanway, John J Eldridge, Matthew J Jarvis

Abstract:

The z = 6.6 Lyman-$\alpha$ emitter 'CR7' has been claimed to have a Population III-like stellar population, or alternatively, be a candidate Direct Collapse Black Hole (DCBH). In this paper we investigate the evidence for these exotic scenarios using recently available, deeper, optical, near-infrared and mid-infrared imaging. We find strong Spitzer/IRAC detections for the main component of CR7 at 3.6 and 4.5 microns, and show that it has a blue colour ([3.6] - [4.5] $= -1.2\pm 0.3$). This colour cannot be reproduced by current Pop. III or pristine DCBH models. Instead, the results suggest that the [3.6] band is contaminated by the [OIII]4959,5007 emission line with an implied rest-frame equivalent width of EW_0 (H$\beta$ + [OIII]) $\gtrsim 2000$\AA. Furthermore, we find that new near-infrared data from the UltraVISTA survey supports a weaker He II 1640 emission line than previously measured, with EW_0 $= 40 \pm 30$\AA. For the fainter components of CR7 visible in Hubble Space Telescope imaging, we find no evidence that they are particularly red as previously claimed, and show that the derived masses and ages are considerably uncertain. In light of the likely detection of strong [OIII] emission in CR7 we discuss other more standard interpretations of the system that are consistent with the data. We find that a low-mass, narrow-line AGN can reproduce the observed features of CR7, including the lack of radio and X-ray detections. Alternatively, a young, low-metallicity (~1/200 solar) starburst, modelled including binary stellar pathways, can reproduce the inferred strength of the He II line and simultaneously the strength of the observed [OIII] emission, but only if the gas shows super-solar $\alpha$-element abundances (O/Fe ~ 5 O/Fe solar).

The 2-degree Field Lensing Survey: Photometric redshifts from a large new training sample to r < 19.5

Monthly Notices of the Royal Astronomical Society 466:2 (2017) 1582-1159

Authors:

C Wolf, AS Johnson, M Bilicki, C Blake, A Amon, T Erben, K Glazebrook, C Heymans, H Hildebrandt, S Joudaki, D Klaes, K Kuijken, C Lidman, F Marin, D Parkinson, G Poole

Abstract:

© 2016 The Authors. We present a new training set for estimating empirical photometric redshifts of galaxies, which was created as part of the 2-degree Field Lensing Survey project. This training set is located in a ~700 deg 2 area of the Kilo-Degree-Survey South field and is randomly selected and nearly complete at r < 19.5. We investigate the photometric redshift performance obtained with ugriz photometry from VST-ATLAS and W1/W2 fromWISE, based on several empirical and template methods. The best redshift errors are obtained with kernel-density estimation (KDE), as are the lowest biases, which are consistent with zero within statistical noise. The 68th percentiles of the redshift scatter for magnitude-limited samples at r < (15.5, 17.5, 19.5) are (0.014, 0.017, 0.028). In this magnitude range, there are no known ambiguities in the colour-redshift map, consistent with a small rate of redshift outliers. In the fainter regime, the KDE method produces p(z) estimates per galaxy that represent unbiased and accurate redshift frequency expectations. The p(z) sum over any subsample is consistent with the true redshift frequency plus Poisson noise. Further improvements in redshift precision at r < 20 would mostly be expected from filter sets with narrower passbands to increase the sensitivity of colours to small changes in redshift.

No fifth force in a scale invariant universe

PHYSICAL REVIEW D 95:6 (2017) ARTN 064038

Authors:

PG Ferreira, CT Hill, GG Ross

Galaxy Zoo: star-formation versus spiral arm number

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:2 (2017) 1850-1863

Authors:

Ross E Hart, Steven P Bamford, Kevin RV Casteels, Sandor J Kruk, Christopher Lintott, Karen L Masters

Abstract:

Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star-formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong `grand design' arms, to those with many `flocculent' arms. We investigate how these different arm types are related to a galaxy's star-formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine UV and mid-IR photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star-formation: an additional $\sim 10$ per cent of star-formation in two-armed galaxies is identified via mid-IR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-$\beta$ relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing timescales of star-forming regions (i.e., molecular clouds), or contrasting recent star-formation histories.