Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna
Scientific Data Nature Publishing Group 2 (2015) 150026
Abstract:
Camera traps can be used to address large-scale questions in community ecology by providing systematic data on an array of wide-ranging species. We deployed 225 camera traps across 1,125 km(2) in Serengeti National Park, Tanzania, to evaluate spatial and temporal inter-species dynamics. The cameras have operated continuously since 2010 and had accumulated 99,241 camera-trap days and produced 1.2 million sets of pictures by 2013. Members of the general public classified the images via the citizen-science website www.snapshotserengeti.org. Multiple users viewed each image and recorded the species, number of individuals, associated behaviours, and presence of young. Over 28,000 registered users contributed 10.8 million classifications. We applied a simple algorithm to aggregate these individual classifications into a final 'consensus' dataset, yielding a final classification for each image and a measure of agreement among individual answers. The consensus classifications and raw imagery provide an unparalleled opportunity to investigate multi-species dynamics in an intact ecosystem and a valuable resource for machine-learning and computer-vision research.Milking the spherical cow - on aspherical dynamics in spherical coordinates
Monthly Notices of the Royal Astronomical Society Oxford University Press 451:2 (2015) 1366-1379
Abstract:
Galaxies and the dark matter haloes that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealized calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are 'maximally stable', i.e. that do not evolve at first order when external potentials (which arise from baryons, large-scale tidal fields or infalling substructure) are applied. We show that a spherically symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstrate that: (a) observational analyses that falsely assume spherical symmetry are made more accurate by imposing a strong prior preference for near-isotropic velocity dispersions in the centre of spheroids; (b) numerical simulations that use an idealized spherically symmetric setup can yield misleading results and should be avoided where possible; and (c) triaxial dark matter haloes (formed in collisionless cosmological simulations) nearly attain our maximally stable limit, but their evolution freezes out before reaching it.Angular momentum transfer to a Milky Way disc at high redshift
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 449:4 (2015) 4363-4379
Cosmological constraints from Subaru weak lensing cluster counts
Publications of the Astronomical Society of Japan Oxford University Press (OUP) 67:3 (2015) 34
Star-forming galaxies in the first billion years
Astronomy & Geophysics Oxford University Press (OUP) 56:3 (2015) 3.39-3.43