Diffuse gamma ray background from annihilating dark matter in density spikes around supermassive black holes

Physical Review D American Physical Society (APS) 89:4 (2014) 043520

Authors:

Alexander Belikov, Joseph Silk

Dancing in the dark: galactic properties trace spin swings along the cosmic web

ArXiv 1402.1165 (2014)

Authors:

Yohan Dubois, Christophe Pichon, Charlotte Welker, Damien Le Borgne, Julien Devriendt, Clotilde Laigle, Sandrine Codis, Dmitry Pogosyan, Stéphane Arnouts, Karim Benabed, Emmanuel Bertin, Jeremy Blaizot, François Bouchet, Jean-François Cardoso, Stéphane Colombi, Valérie de Lapparent, Vincent Desjacques, Raphaël Gavazzi, Susan Kassin, Taysun Kimm, Henry McCracken, Bruno Milliard, Sébastien Peirani, Simon Prunet, Stéphane Rouberol, Joseph Silk, Adrianne Slyz, Thierry Sousbie, Romain Teyssier, Laurence Tresse, Marie Treyer, Didier Vibert, Marta Volonteri

Abstract:

A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2

Dancing in the dark: galactic properties trace spin swings along the cosmic web

(2014)

Authors:

Yohan Dubois, Christophe Pichon, Charlotte Welker, Damien Le Borgne, Julien Devriendt, Clotilde Laigle, Sandrine Codis, Dmitry Pogosyan, Stéphane Arnouts, Karim Benabed, Emmanuel Bertin, Jeremy Blaizot, François Bouchet, Jean-François Cardoso, Stéphane Colombi, Valérie de Lapparent, Vincent Desjacques, Raphaël Gavazzi, Susan Kassin, Taysun Kimm, Henry McCracken, Bruno Milliard, Sébastien Peirani, Simon Prunet, Stéphane Rouberol, Joseph Silk, Adrianne Slyz, Thierry Sousbie, Romain Teyssier, Laurence Tresse, Marie Treyer, Didier Vibert, Marta Volonteri

The ultraviolet attenuation law in backlit spiral galaxies Based in part on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.

Astronomical Journal 147:2 (2014)

Authors:

WC Keel, AM Manning, BW Holwerda, CJ Lintott, K Schawinski

Abstract:

The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the UV. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations at this coarse spatial resolution. © 2014. The American Astronomical Society. All rights reserved.

Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia.

Genome research 24:2 (2014) 212-226

Authors:

Pedro G Ferreira, Pedro Jares, Daniel Rico, Gonzalo Gómez-López, Alejandra Martínez-Trillos, Neus Villamor, Simone Ecker, Abel González-Pérez, David G Knowles, Jean Monlong, Rory Johnson, Victor Quesada, Sarah Djebali, Panagiotis Papasaikas, Mónica López-Guerra, Dolors Colomer, Cristina Royo, Maite Cazorla, Magda Pinyol, Guillem Clot, Marta Aymerich, Maria Rozman, Marta Kulis, David Tamborero, Anaïs Gouin, Julie Blanc, Marta Gut, Ivo Gut, Xose S Puente, David G Pisano, José Ignacio Martin-Subero, Nuria López-Bigas, Armando López-Guillermo, Alfonso Valencia, Carlos López-Otín, Elías Campo, Roderic Guigó

Abstract:

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.