Feeding compact bulges and supermassive black holes with low angular-momentum cosmic gas at high redshift

(2011)

Authors:

Yohan Dubois, Christophe Pichon, Martin Haehnelt, Taysun Kimm, Adrianne Slyz, Julien Devriendt, Dmitry Pogosyan

A robust sample of galaxies at redshifts 6.0

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 418:3 (2011) 2074-2105

Authors:

RJ McLure, JS Dunlop, L de Ravel, M Cirasuolo, RS Ellis, M Schenker, BE Robertson, AM Koekemoer, DP Stark, RAA Bowler

Towards a fully consistent parametrization of modified gravity

Physical Review D - Particles, Fields, Gravitation and Cosmology 84:12 (2011)

Authors:

T Baker, PG Ferreira, C Skordis, J Zuntz

Abstract:

There is a distinct possibility that current and future cosmological data can be used to constrain Einstein's theory of gravity on the very largest scales. To be able to do this in a model-independent way, it makes sense to work with a general parameterization of modified gravity. Such an approach would be analogous to the Parameterized Post-Newtonian (PPN) approach which is used on the scale of the Solar System. A few such parameterizations have been proposed and preliminary constraints have been obtained. We show that the majority of such parameterizations are only exactly applicable in the quasistatic regime. On larger scales they fail to encapsulate the full behavior of typical models currently under consideration. We suggest that it may be possible to capture the additions to the 'Parameterized Post-Friedmann' (PPF) formalism by treating them akin to fluid perturbations. © 2011 American Physical Society.

The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

Proceedings of the IAU (2011)

Authors:

LC Powell, F Bournaud, D Chapon, J Devriendt, A Slyz, R Teyssier

Abstract:

Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z {\approx} 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z {\approx} 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved.

Rigging dark haloes: Why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

Monthly Notices of the Royal Astronomical Society 418:4 (2011) 2493-2507

Authors:

C Pichon, D Pogosyan, T Kimm, A Slyz, J Devriendt, Y Dubois

Abstract:

State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter haloes is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted on to virialized dark matter haloes. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high-redshift thin discs inside out. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.