Extreme value statistics of smooth Gaussian random fields
Monthly Notices of the Royal Astronomical Society (2011)
Abstract:
We consider the Gumbel or extreme value statistics describing the distribution function p G (ν max ) of the maximum values of a random field ν within patches of fixed size. We present, for smooth Gaussian random fields in two and three dimensions, an analytical estimate of p G which is expected to hold in a regime where local maxima of the field are moderately high and weakly clustered. When the patch size becomes sufficiently large, the negative of the logarithm of the cumulative extreme value distribution is simply equal to the average of the Euler characteristic of the field in the excursion ν≥ν max inside the patches. The Gumbel statistics therefore represents an interesting alternative probe of the genus as a test of non-Gaussianity, e.g. in cosmic microwave background temperature maps or in 3D galaxy catalogues. It can be approximated, except in the remote positive tail, by a negative Weibull-type form, converging slowly to the expected Gumbel-type form for infinitely large patch size. Convergence is facilitated when large-scale correlations are weaker. We compare the analytic predictions to numerical experiments for the case of a scale-free Gaussian field in two dimensions, achieving impressive agreement between approximate theory and measurements. We also discuss the generalization of our formalism to non-Gaussian fields. © 2011 The Authors. Monthly Notices of the Royal Astronomical Society © 2011 RAS.Detection of brown dwarf like objects in the core of NGC3603
Astrophysical Journal 731:1 (2011)
Abstract:
We used near-infrared data obtained with the Wide Field Camera 3 on the Hubble Space Telescope to identify objects having the colors of brown dwarfs (BDs) in the field of the massive galactic cluster NGC3603. These are identified through a combination of narrow- and medium-band filters which span the J and H bands and are particularly sensitive to the presence of the 1.3-1.5 μm H2O molecular band unique to BDs. We provide a calibration of the relationship between effective temperature and color for both field stars and BDs. This photometric method provides effective temperatures for BDs to an accuracy of 350 ± K relative to spectroscopic techniques. This accuracy is shown to be not significantly affected by either stellar surface gravity or uncertainties in the interstellar extinction. We identify nine objects having effective temperatures between 1700 and 2200 K, typical of BDs, observed J-band magnitudes in the range 19.5-21.5, and that are strongly clustered toward the luminous core of NGC3603. However, if these are located at the distance of the cluster, they are far too luminous to be normal BDs. We argue that it is unlikely that these objects are either artifacts of our data set, normal field BDs/M-type giants, or extragalactic contaminants and, therefore, might represent a new class of stars having the effective temperatures of BDs but with luminosities of more massive stars. We explore the interesting scenario in which these objects would be normal stars that have recently tidally ingested a hot Jupiter, the remnants of which are providing a short-lived extended photosphere to the central star. In this case, we would expect them to show the signature of fast rotation. © 2011 The American Astronomical Society. All rights reserved.Large-scale shock-ionized and photoionized gas in M83: The impact of star formation
Astrophysical Journal 731:1 (2011)
Abstract:
We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007)/Hβ versus [S II](6716+6731)/ Hα, with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (02 × 02) basis and compare it with several photo- and shock-ionization models. We select four regions from the center to the outer spiral arm and compare them in the diagnostic diagram. For the photoionized gas, we observe a gradual increase of the log ([O III]/Hβ) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super-solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photoionized from the shock-ionized component of the gas. We find that the shock-ionized Hα emission ranges from ∼2% to about 15%-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is a horizontal distribution around log ([O III]/Hβ) 0. This feature is well fit by a shock-ionization model with 2.0 Z metallicity and shock velocities in the range of 250-350 km s-1. A low-velocity shock component, <200 km s-1, is also detected and is spatially located at the boundary between the outer ring and the spiral arm. The low-velocity shock component can be due to (1) supernova remnants located nearby, (2) dynamical interaction between the outer ring and the spiral arm, and (3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical energy produced by the central starburst in M83. © 2011. The American Astronomical Society. All rights reserved.Galactic star formation in parsec-scale resolution simulations
Proceedings of the International Astronomical Union 6:S270 (2011) 487-490
Abstract:
The interstellar medium (ISM) in galaxies is multiphase and cloudy, with stars forming in the very dense, cold gas found in Giant Molecular Clouds (GMCs). Simulating the evolution of an entire galaxy, however, is a computational problem which covers many orders of magnitude, so many simulations cannot reach densities high enough or temperatures low enough to resolve this multiphase nature. Therefore, the formation of GMCs is not captured and the resulting gas distribution is smooth, contrary to observations. We investigate how star formation (SF) proceeds in simulated galaxies when we obtain parsec-scale resolution and more successfully capture the multiphase ISM. Both major mergers and the accretion of cold gas via filaments are dominant contributors to a galaxy's total stellar budget and we examine SF at high resolution in both of these contexts. © 2011 International Astronomical Union.How AGN feedback and metal cooling shape cluster entropy profiles
ArXiv 1104.0171 (2011)