Gravitational Magnus effect from scalar dark matter
Physical Review D American Physical Society (APS) 110:2 (2024) 024009
The great escape: understanding the connection between Ly α emission and LyC escape in simulated JWST analogues
Monthly Notices of the Royal Astronomical Society Oxford University Press 532:2 (2024) 2463-2484
Abstract:
Constraining the escape fraction of Lyman Continuum (LyC) photons from high-redshift galaxies is crucial to understanding reionization. Recent observations have demonstrated that various characteristics of the Ly α emission line correlate with the inferred LyC escape fraction (f LyC esc ) of low-redshift galaxies. Using a data set of 9600 mock Ly α spectra of star-forming galaxies at 4.64 ≤ z ≤ 6 from the SPHINX20 cosmological radiation hydrodynamical simulation, we study the physics controlling the escape of Ly α and LyC photons. We find that our mock Ly α observations are representative of high-redshift observations and that typical observational methods tend to overpredict the Ly α escape fraction (f Ly α esc ) by as much as 2 dex. We investigate the correlations between f LyC esc and f Ly α esc , Ly α equivalent width (Wλ(Ly α)), peak separation (vsep), central escape fraction (fcen), and red peak asymmetry (Ared f ). We find that f Ly α esc and fcen are good diagnostics for LyC leakage, selecting for galaxies with lower neutral gas densities and less UV attenuation that have recently experienced supernova feedback. In contrast, Wλ(Ly α) and vsep are found to be necessary but insufficient diagnostics, while Ared f carries little information. Finally, we use stacks of Ly α, H α, and F150W mock surface brightness profiles to find that galaxies with high f LyC esc tend to have less extended Ly α and F150W haloes but larger H α haloes than their non-leaking counterparts. This confirms that Ly α spectral profiles and surface brightness morphology can be used to better understand the escape of LyC photons from galaxies during the epoch of reionization.The Simons Observatory: component separation pipelines for B-modes
(2024)
Galaxy Zoo DESI: large-scale bars as a secular mechanism for triggering AGNs
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:2 (2024) 2320-2330
LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
The Open Journal of Astrophysics Maynooth University 7 (2024)