Influence of AGN jets on the magnetized ICM
ArXiv 0905.3345 (2009)
Abstract:
Galaxy clusters are the largest structures for which there is observational evidence of a magnetised medium. Central cores seem to host strong magnetic fields ranging from a few 0.1 microG up to several 10 microG in cooling flow clusters. Numerous clusters harbor central powerful AGN which are thought to prevent cooling flows in some clusters. The influence of such feedback on the magnetic field remains unclear: does the AGN-induced turbulence compensate the loss of magnetic amplification within a cool core? And how is this turbulence sustained over several Gyr? Using high resolution magneto-hydrodynamical simulations of the self-regulation of a radiative cooling cluster, we study for the first time the evolution of the magnetic field within the central core in the presence of a powerful AGN jet. It appears that the jet-induced turbulence strongly amplifies the magnetic amplitude in the core beyond the degree to which it would be amplified by pure compression in the gravitational field of the cluster. The AGN produces a non-cooling core and increases the magnetic field amplitude in good agreement with microG field observations.Revealing Hanny's Voorwerp: radio observations of IC 2497
ArXiv 0905.1851 (2009)
Abstract:
We present multi-wavelength radio observations in the direction of the spiral galaxy IC 2497 and the neighbouring emission nebula known as "Hanny's Voorwerp". Our WSRT continuum observations at 1.4 GHz and 4.9 GHz, reveal the presence of extended emission at the position of the nebulosity, although the bulk of the emission remains unresolved at the centre of the galaxy. e-VLBI 1.65 GHz observations show that on the milliarcsecond-scale a faint central compact source is present in IC 2497 with a brightness temperature in excess of 4E5 K. With the WSRT, we detect a large reservoir of neutral hydrogen in the proximity of IC 2497. One cloud complex with a total mass of 5.6E9 Msol to the South of IC 2497, encompasses Hanny's Voorwerp. Another cloud complex is located at the position of a small galaxy group ~100 kpc to the West of IC 2497 with a mass of 2.9E9 Msol. Our data hint at a physical connection between both complexes. We also detect HI in absorption against the central continuum source of IC 2497. Our observations strongly support the hypothesis that Hanny's Voorwerp is being ionised by an AGN in the centre of IC 2497. In this scenario, a plasma jet associated with the AGN, clears a path through the ISM/IGM in the direction towards the nebulosity. The large-scale radio continuum emission possibly originates from the interaction between this jet and the large cloud complex that Hanny's Voorwerp is embedded in. The HI kinematics do not fit regular rotation, thus the cloud complex around IC 2497 is probably of tidal origin. From the HI absorption against the central source, we derive a lower limit of 2.8E21 +- 0.4E21 atoms/sqcm to the HI column density. However, assuming non-standard conditions for the detected gas, we cannot exclude the possibility that the AGN in the centre of IC 2497 is Compton-thick.Galaxy Zoo: The properties of merging galaxies in the nearby Universe - local environments, colours, masses, star-formation rates and AGN activity
ArXiv 0903.5057 (2009)
Abstract:
Following the study of Darg et al. (2009; hereafter D09a) we explore the environments, optical colours, stellar masses, star formation and AGN activity in a sample of 3003 pairs of merging galaxies drawn from the SDSS using visual classifications from the Galaxy Zoo project. While D09a found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must, therefore, arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star-formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being `over-observed' in mergers. We also suggest that the transition mass $3\times10^{10}{M}_{\astrosun}$, noted by \citet{kauffmann1}, below which ellipticals are rare could be linked to disc survival/destruction in mergers.Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies
ArXiv 0903.4937 (2009)
Abstract:
We present the largest, most homogeneous catalogue of merging galaxies in the nearby universe obtained through the Galaxy Zoo project - an interface on the world-wide web enabling large-scale morphological classification of galaxies through visual inspection of images from the Sloan Digital Sky Survey (SDSS). The method converts a set of visually-inspected classifications for each galaxy into a single parameter (the `weighted-merger-vote fraction,' $f_m$) which describes our confidence that the system is part of an ongoing merger. We describe how $f_m$ is used to create a catalogue of 3003 visually-selected pairs of merging galaxies from the SDSS in the redshift range $0.005 < z <0.1$. We use our merger sample and values of $f_m$ applied to the SDSS Main Galaxy Spectral sample (MGS) to estimate that the fraction of volume-limited ($M_r < -20.55$) major mergers ($1/3 < {M}^*_1/{M}^*_2 < 3$) in the nearby universe is $1 - 3 \times C%$ where $C \sim 1.5$ is a correction factor for spectroscopic incompleteness. Having visually classified the morphologies of the constituent galaxies in our mergers, we find that the spiral-to-elliptical ratio of galaxies in mergers is higher by a factor $\sim 2$ relative to the global population. In a companion paper, we examine the internal properties of these merging galaxies and conclude that this high spiral-to-elliptical ratio in mergers is due to a longer time-scale over which mergers with spirals are detectable compared to mergers with ellipticals.Galaxy Zoo: A sample of blue early-type galaxies at low redshift
ArXiv 0903.3415 (2009)