Constraining Lorentz violation with cosmology.

Phys Rev Lett 101:26 (2008) 261102

Authors:

JA Zuntz, PG Ferreira, TG Zlosnik

Abstract:

The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities.

The impact of TP-AGB stars on hierarchical galaxy formation models

ArXiv 0812.1225 (2008)

Authors:

Chiara Tonini, Claudia Maraston, Julien Devriendt, Daniel Thomas, Joseph Silk

Abstract:

The spectro-photometric properties of galaxies in galaxy formation models are obtained by combining the predicted history of star formation and mass accretion with the physics of stellar evolution through stellar population models. In the recent literature, significant differences have emerged regarding the implementation of the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution. The emission in the TP-AGB phase dominates the bolometric and near-IR spectrum of intermediate-age (~1 Gyr) stellar populations, hence it is crucial for the correct modeling of the galaxy luminosities and colours. In this paper for the first time, we incorporate a full prescription of the TP-AGB phase in a semi-analytic model of galaxy formation. We find that the inclusion of the TP-AGB in the model spectra dramatically alters the predicted colour-magnitude relation and its evolution with redshift. When the TP-AGB phase is active, the rest-frame V-K galaxy colours are redder by almost 2 magnitudes in the redshift range z~2-3 and by 1 magnitude at z~1. Very red colours are produced in disk galaxies, so that the V-K colour distributions of disk and spheroids are virtually undistinguishable at low redshifts. We also find that the galaxy K-band emission is more than 1 magnitude higher in the range z~1-3. This may alleviate the difficulties met by the hierarchical clustering scenario in predicting the red galaxy population at high redshifts. The comparison between simulations and observations have to be revisited in the light of our results.

The impact of TP-AGB stars on hierarchical galaxy formation models

(2008)

Authors:

Chiara Tonini, Claudia Maraston, Julien Devriendt, Daniel Thomas, Joseph Silk

Eddington-Born-Infeld gravity and the large scale structure of the Universe

(2008)

Authors:

Máximo Bañados, Pedro G Ferreira, Constantinos Skordis

Eddington-Born-Infeld gravity and the large scale structure of the Universe

ArXiv 0811.1272 (2008)

Authors:

Máximo Bañados, Pedro G Ferreira, Constantinos Skordis

Abstract:

It has been argued that a Universe governed by Eddington-Born-Infeld gravity can be compatible with current cosmological constraints. The extra fields introduced in this theory can behave both as dark matter and dark energy, unifying the dark sector in one coherent framework. We show the various roles the extra fields can play in the expansion of the Universe and study the evolution of linear perturbations in the various regimes. We find that, as a unified theory of the dark sector, Eddington-Born-Infeld gravity will lead to excessive fluctuations in the Cosmic Microwave Background on large scales. In the presence of a cosmological constant, however, the extra fields can behave as a form of non-particulate dark matter and can lead to a cosmology which is entirely compatible with current observations of large scale structure. We discuss the interpretation of this form of dark matter and how it can differ from standard, particulate dark matter.