Planet Hunters NGTS: New Planet Candidates from a Citizen Science Search of the Next Generation Transit Survey Public Data

Astronomical Journal IOP Publishing 167:5 (2024) 238

Authors:

Sean M O’Brien, Megan E Schwamb, Samuel Gill, Christopher A Watson, Matthew R Burleigh, Alicia Kendall, Sarah L Casewell, David R Anderson, José I Vines, James S Jenkins, Douglas R Alves, Laura Trouille, Solène Ulmer-Moll, Edward M Bryant, Ioannis Apergis, Matthew Battley, Daniel Bayliss, Nora L Eisner, Edward Gillen, Michael R Goad, Maximilian N Günther, Beth A Henderson, Jeong-Eun Heo, David G Jackson, Chris Lintott

Abstract:

We present the results from the first two years of the Planet Hunters Next Generation Transit Survey (NGTS) citizen science project, which searches for transiting planet candidates in data from the NGTS by enlisting the help of members of the general public. Over 8000 registered volunteers reviewed 138,198 light curves from the NGTS Public Data Releases 1 and 2. We utilize a user weighting scheme to combine the classifications of multiple users to identify the most promising planet candidates not initially discovered by the NGTS team. We highlight the five most interesting planet candidates detected through this search, which are all candidate short-period giant planets. This includes the TIC-165227846 system that, if confirmed, would be the lowest-mass star to host a close-in giant planet. We assess the detection efficiency of the project by determining the number of confirmed planets from the NASA Exoplanet Archive and TESS Objects of Interest (TOIs) successfully recovered by this search and find that 74% of confirmed planets and 63% of TOIs detected by NGTS are recovered by the Planet Hunters NGTS project. The identification of new planet candidates shows that the citizen science approach can provide a complementary method to the detection of exoplanets with ground-based surveys such as NGTS.

The impact of cosmic rays on the interstellar medium and galactic outflows of Milky Way analogues

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:4 (2024) 3617-3640

Authors:

Francisco Rodríguez Montero, Sergio Martin-Alvarez, Adrianne Slyz, Julien Devriendt, Yohan Dubois, Debora Sijacki

Abstract:

During the last decade, cosmological simulations have managed to reproduce realistic and morphologically diverse galaxies, spanning the Hubble sequence. Central to this success was a phenomenological calibration of the few included feedback processes, while glossing over higher complexity baryonic physics. This approach diminishes the predictive power of such simulations, preventing to further our understanding of galaxy formation. To tackle this fundamental issue, we investigate the impact of cosmic rays (CRs) and magnetic fields on the interstellar medium and the launching of outflows in a cosmological zoom-in simulation of a Milky Way-like galaxy. We find that including CRs decreases the stellar mass of the galaxy by a factor of 10 at high redshift and ∼4 at cosmic noon, leading to a stellar mass to halo mass ratio in good agreement with abundance matching models. Such decrease is caused by two effects: (i) a reduction of cold, high-density, star-forming gas, and (ii) a larger fraction of supernova (SN) events exploding at lower densities, where they have a higher impact. SN-injected CRs produce enhanced, multiphase galactic outflows, which are accelerated by CR pressure gradients in the circumgalactic medium of the galaxy. While the mass budget of these outflows is dominated by the warm ionized gas, warm neutral and cold gas phases contribute significantly at high redshifts. Importantly, our work shows that future JWST observations of galaxies and their multiphase outflows across cosmic time have the ability to constrain the role of CRs in regulating star formation.

Optimal inflationary potentials

Physical Review D American Physical Society 109:8 (2024) 83524

Authors:

Tomás Sousa, Deaglan Bartlett, Harry Desmond, Pedro Ferreira

Abstract:

Inflation is a highly favored theory for the early Universe. It is compatible with current observations of the cosmic microwave background and large scale structure and is a driver in the quest to detect primordial gravitational waves. It is also, given the current quality of the data, highly underdetermined with a large number of candidate implementations. We use a new method in symbolic regression to generate all possible simple scalar field potentials for one of two possible basis sets of operators. Treating these as single-field, slow-roll inflationary models we then score them with an information-theoretic metric ("minimum description length") that quantifies their efficiency in compressing the information in current data. We explore two possible priors on the parameter space of potentials, one related to the functions' structural complexity and one that uses a Katz back-off language model to prefer functions that may be theoretically motivated. This enables us to identify the inflaton potentials that optimally balance simplicity with accuracy at explaining current data, which may subsequently find theoretical motivation. Our exploratory study opens the door to extraction of fundamental physics directly from data, and may be augmented with more refined theoretical priors in the quest for a complete understanding of the early Universe.

On the tension between the radial acceleration relation and Solar system quadrupole in modified gravity MOND

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 530:2 (2024) 1781-1795

Authors:

Harry Desmond, Aurélien Hees, Benoit Famaey

The expected kinematic matter dipole is robust against source evolution

ArXiv 2404.07929 (2024)