A NICMOS imaging study of high-z quasar host galaxies

ArXiv astro-ph/0010007 (2000)

Authors:

MJ Kukula, JS Dunlop, RJ McLure, L Miller, WJ Percival, SA Baum, CP O'Dea

Abstract:

We present the first results from a major Hubble Space Telescope program designed to investigate the cosmological evolution of quasar host galaxies from z~2 to the present day. Here we describe J and H-band NICMOS imaging of two quasar samples at redshifts of 0.9 and 1.9 respectively. Each sample contains equal numbers of radio-loud and radio-quiet quasars, selected to lie within the same narrow range of optical absolute magnitude (-24 > M_V > -25). Filter and target selection were designed to ensure that at each redshift the images sample the same part of the object's rest-frame spectrum, avoiding potential contamination by [OIII]lambda5007 and H-alpha emission lines. At z=1 the hosts of both radio-loud and radio-quiet quasars lie on the same Kormendy relation described by 3CR radio galaxies at comparable redshift. There is some evidence for a gap of ~1 mag between the host luminosities of RLQs and RQQs, a difference that cannot be due to emission-line contamination given the design of our study. However, within current uncertainties, simple passive stellar evolution is sufficient to link these galaxies with the elliptical hosts of low-redshift quasars of comparable nuclear output, implying that the hosts are virtually fully assembled by z=1. At z=2 the luminosity gap appears to have widened further to ~1.5 mag. Thus while the hosts of radio-loud quasars remain consistent with a formation epoch of z>3, allowing for passive evolution implies that the hosts of radio-quiet quasars are ~2-4 times less massive at z=2 than at low z.

Star Formation in Viscous Galaxy Disks

ArXiv astro-ph/0009330 (2000)

Authors:

Adrianne Slyz, Julien Devriendt, Andreas Burkert, Kevin Prendergast, Joseph Silk

Abstract:

The Lin and Pringle model (1987) of galactic disk formation postulates that if star formation proceeds on the same timescale as the viscous redistribution of mass and angular momentum in disk galaxies, then the stars attain an exponential density profile. Their claim is that this result holds generally: regardless of the disk galaxy's initial gas and dark matter distribution and independent of the nature of the viscous processes acting in the disk. We present new results from a set of 2D hydro-simulations which investigate their analytic result.

Star Formation in Viscous Galaxy Disks

(2000)

Authors:

Adrianne Slyz, Julien Devriendt, Andreas Burkert, Kevin Prendergast, Joseph Silk

Cosmology from Maxima-1, Boomerang and COBE/DMR CMB Observations

ArXiv astro-ph/0007333 (2000)

Authors:

AH Jaffe, PAR Ade, A Balbi, JJ Bock, JR Bond, J Borrill, A Boscaleri, K Coble, BP Crill, P de Bernardis, P Farese, PG Ferreira, K Ganga, M Giacometti, S Hanany, E Hivon, VV Hristov, A Iacoangeli, AE Lange, AT Lee, L Martinis, S Masi, PD Mauskopf, A Melchiorri, T Montroy, CB Netterfield, S Oh, E Pascale, F Piacentini, D Pogosyan, S Prunet, B Rabii, S Rao, PL Richards, G Romeo, JE Ruhl, F Scaramuzzi, D Sforna, GF Smoot, R Stompor, CD Winant, JHP Wu

Abstract:

Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE-DMR, provide consistent and high signal-to-noise measurements of the CMB power spectrum at spherical harmonic multipole bands over $2<\ell\lta800$. Analysis of the combined data yields 68% (95%) confidence limits on the total density, $\Omega_{\rm {tot}}\simeq 1.11 \pm 0.07 (^{+0.13}_{-0.12})$, the baryon density, $\Omega_b h^2\simeq 0.032^{+0.005}_{-0.004} (^{+0.009}_{-0.008})$, and the scalar spectral tilt, $n_s\simeq1.01^{+0.09}_{-0.07} (^{+0.17}_{-0.14})$. These data are consistent with inflationary initial conditions for structure formation. Taken together with other cosmological observations, they imply the existence of both non-baryonic dark matter and dark energy in the universe.

Asymmetric Beams in Cosmic Microwave Background Anisotropy Experiments

(2000)

Authors:

JHP Wu, A Balbi, J Borrill, PG Ferreira, S Hanany, AH Jaffe, AT Lee, S Oh, B Rabii, PL Richards, GF Smoot, R Stompor, CD Winant