Measuring Stellar and Dark Mass Fractions in Spiral Galaxies

ArXiv astro-ph/0011250 (2000)

Authors:

Thilo Kranz, Adrianne Slyz, Hans-Walter Rix

Abstract:

We explore the relative importance of the stellar mass density as compared to the inner dark halo, for the observed gas kinematics thoughout the disks of spiral galaxies. We perform hydrodynamical simulations of the gas flow in a sequence of potentials with varying the stellar contribution to the total potential. The stellar portion of the potential was derived empirically from K-band photometry. The output of the simulations - namely the gas density and the gas velocity field - are then compared to the observed spiral arm morphology and the H-alpha gas kinematics. We solve for the best matching spiral pattern speed and draw conclusions on how massive the stellar disk can be at most. For the case of the galaxy NGC 4254 (Messier 99) we demonstrate that the prominent spiral arms of the stellar component would overpredict the non-circular gas motions unless an axisymmetric dark halo component adds significantly in the radial range R_exp < R < 3*R_exp.

Measuring Stellar and Dark Mass Fractions in Spiral Galaxies

(2000)

Authors:

Thilo Kranz, Adrianne Slyz, Hans-Walter Rix

The Impact of Galaxy Formation on the Diffuse Background Radiation

ArXiv astro-ph/0010460 (2000)

Authors:

J Silk, J Devriendt

Abstract:

The far infrared background is a sink for the hidden aspects of galaxy formation. At optical wavelengths, ellipticals and spheroids are old, even at $z \sim 1.$ Neither the luminous formation phase nor their early evolution is seen in the visible. We infer that ellipticals and, more generally, most spheroids must have formed in dust-shrouded starbursts. In this article, we show how separate tracking of disk and spheroid star formation enables us to infer that disks dominate near the peak in the cosmic star formation rate at $z \lapproxeq 2$ and in the diffuse ultraviolet/optical/infrared background, whereas spheroid formation dominates the submillimetre background.

The Impact of Galaxy Formation on the Diffuse Background Radiation

(2000)

Authors:

J Silk, J Devriendt

Galaxy Modelling - II. Multi-Wavelength Faint Counts from a Semi-Analytic Model of Galaxy Formation

ArXiv astro-ph/0010198 (2000)

Authors:

JEG Devriendt, B Guiderdoni

Abstract:

(Abridged) This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The STARDUST spectral energy distributions described in Devriendt et al. (1999) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of $\Omega_0$, or a flat universe with a non-zero cosmological constant. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux levels.