On the Viability of Determining Galaxy Properties from Observations I: Star Formation Rates and Kinematics

(2022)

Authors:

Kearn Grisdale, Laurence Hogan, Dimitra Rigopoulou, Niranjan Thatte, Miguel Pereira-Santaella, Julien Devriendt, Adrianne Slyz, Ismael García-Bernete, Yohan Dubois, Sukyoung K Yi, Katarina Kraljic

Towards convergence of turbulent dynamo amplification in cosmological simulations of galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3326-3344

Authors:

Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Debora Sijacki, Mark LA Richardson, Harley Katz

Abstract:

Our understanding of the process through which magnetic fields reached their observed strengths in present-day galaxies remains incomplete. One of the advocated solutions is a turbulent dynamo mechanism that rapidly amplifies weak magnetic field seeds to the order of ∼μG. However, simulating the turbulent dynamo is a very challenging computational task due to the demanding span of spatial scales and the complexity of the required numerical methods. In particular, turbulent velocity and magnetic fields are extremely sensitive to the spatial discretization of simulated domains. To explore how refinement schemes affect galactic turbulence and amplification of magnetic fields in cosmological simulations, we compare two refinement strategies. A traditional quasi-Lagrangian adaptive mesh refinement approach focusing spatial resolution on dense regions, and a new refinement method that resolves the entire galaxy with a high resolution quasi-uniform grid. Our new refinement strategy yields much faster magnetic energy amplification than the quasi-Lagrangian method, which is also significantly greater than the adiabatic compressional estimate indicating that the extra amplification is produced through stretching of magnetic field lines. Furthermore, with our new refinement the magnetic energy growth factor scales with resolution following ∝Δx−1/2max⁠, in much better agreement with small-scale turbulent box simulations. Finally, we find evidence suggesting most magnetic amplification in our simulated galaxies occurs in the warm phase of their interstellar medium, which has a better developed turbulent field with our new refinement strategy.

The problem with Proca: ghost instabilities in self-interacting vector fields

ArXiv 2204.10868 (2022)

Authors:

Katy Clough, Thomas Helfer, Helvi Witek, Emanuele Berti

Improved cosmological fits with quantized primordial power spectra

PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83515

Authors:

Dj Bartlett, Wj Handley, An Lasenby

Abstract:

We observationally examine cosmological models based on primordial power spectra with quantized wave vectors. Introducing a linearly quantized power spectrum with k0=3.225×10-4 Mpc-1 and spacing Δk=2.257×10-4 Mpc-1 provides a better fit to the Planck 2018 observations than the concordance baseline, with Δχ2=-8.55. Extending the results of Lasenby et al. [preceding paper, Perturbations and the future conformal boundary, Phys. Rev. D 105, 083514 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.083514], we show that the requirement for perturbations to remain finite beyond the future conformal boundary in a universe containing dark matter and a cosmological constant results in a linearly quantized primordial power spectrum. It is found that the infrared cutoffs for this future conformal boundary quantized cosmology do not provide cosmic microwave background power spectra compatible with observations, but future theories may predict more observationally consistent quantized spectra.

Perturbations and the future conformal boundary

PHYSICAL REVIEW D American Physical Society (APS) 105:8 (2022) 83514

Authors:

An Lasenby, Wj Handley, Dj Bartlett, Cs Negreanu

Abstract:

The concordance model of cosmology predicts a universe which finishes in a finite amount of conformal time at a future conformal boundary. We show that for particular cases we study, the background variables and perturbations may be analytically continued beyond this boundary and that the "end of the universe"is not necessarily the end of their physical development. Remarkably, these theoretical considerations of the end of the universe might have observable consequences today: perturbation modes consistent with these boundary conditions have a quantized power spectrum which may be relevant to features seen in the large scale cosmic microwave background. Mathematically these cosmological models may either be interpreted as a palindromic universe mirrored in time, a reflecting boundary condition, or a double cover, but are identical with respect to their observational predictions and stand in contrast to the predictions of conformal cyclic cosmologies.