Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone
Journal of the Atmospheric Sciences 66:8 (2009) 2402-2417
Abstract:
The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric SoundingUnit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m-2, which is only 78%of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m-2 owing to strong compensation between negative shortwave and positive longwave forcings. © 2009 American Meteorological Society.Can the frequency of blocking be described by a red noise process?
Journal of the Atmospheric Sciences 66:7 (2009) 2143-2149
Abstract:
The frequency of persistent atmospheric blocking events in the 40-yr ECMWF Re-Analysis (ERA-40) is compared with the blocking frequency produced by a simple first-order Markov model designed to predict the time evolution of a blocking index [defined by the meridional contrast of potential temperature on the 2-PVU surface (1 PVU ≡ 1 × 10-6 K m2 kg-1 s-1)]. With the observed spatial coherence built into the model, it is able to reproduce the main regions of blocking occurrence and the frequencies of sector blocking very well. This underlines the importance of the climatological background flow in determining the locations of high blocking occurrence as being the regions where the mean midlatitude meridional potential vorticity (PV) gradient is weak. However, when only persistent blocking episodes are considered, the model is unable to simulate the observed frequencies. It is proposed that this persistence beyond that given by a red noise model is due to the self-sustaining nature of the blocking phenomenon. © 2009 American Meteorological Society.The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere
Icarus Elsevier 203:1 (2009) 250-264
Stratospheric communication of El Niño teleconnections to European winter
Journal of Climate 22:15 (2009) 4083-4096
Abstract:
The stratospheric role in the European winter surface climate response to El Niño-Southern Oscillation sea surface temperature forcing is investigated using an intermediate general circulation model with a well-resolved stratosphere. Under El Niño conditions, both the modeled tropospheric and stratospheric mean-state circulation changes correspond well to the observed "canonical" responses of a late winter negative North Atlantic Oscillation and a strongly weakened polar vortex, respectively. The variability of the polar vortex is modulated by an increase in frequency of stratospheric sudden warming events throughout all winter months. The potential role of this stratospheric response in the tropical Pacific-European teleconnection is investigated by sensitivity experiments in which the mean state and variability of the stratosphere are degraded. As a result, the observed stratospheric response to El Niño is suppressed and the mean sea level pressure response fails to resemble the temporal and spatial evolution of the observations. The results suggest that the stratosphere plays an active role in the European response to El Niño. A saturation mechanism whereby for the strongest El Niño events tropospheric forcing dominates the European response is suggested. This is examined by means of a sensitivity test and it is shown that under large El Niño, forcing the European response is insensitive to stratospheric representation.A continuum of sudden stratospheric warmings
Journal of the Atmospheric Sciences 66:2 (2009) 531-540