Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation
Journal of Geophysical Research Atmospheres 115:22 (2010)
Abstract:
Stratospheric ozone depletion has significantly influenced the tropospheric circulation and climate of the Southern Hemisphere (SH) over recent decades, the largest trends being detected in summer. These circulation changes include acceleration of the extratropical tropospheric westerly jet on its poleward side and lowered Antarctic sea level pressure. It is therefore expected that ozone changes will continue to influence climate during the 21st century when ozone recovery is expected. Here we use two contrasting future ozone projections from two chemistry-climate models (CCMs) to force 21st century simulations of the HadGEM1 coupled atmosphere-ocean model, along with A1B greenhouse gas (GHG) concentrations, and study the simulated response in the SH circulation. According to several studies, HadGEM1 simulates present tropospheric climate better than the majority of other available models. When forced by the larger ozone recovery trends, HadGEM1 simulates significant deceleration of the tropospheric jet on its poleward side in the upper troposphere in summer, but the trends in the lower troposphere are not significant. In the simulations with the smaller ozone recovery trends the zonal mean zonal wind trends are not significant throughout the troposphere. The response of the SH circulation to GHG concentration increases in HadGEM1 includes an increase in poleward eddy heat flux in the stratosphere and positive sea level pressure trends in southeastern Pacific. The HadGEM1-simulated zonal wind trends are considerably smaller than the trends simulated by the CCMs, both in the stratosphere and in the troposphere, despite the fact that the zonal mean ozone trends are the same between these simulations. © Copyright 2010 by the American Geophysical Union.PyCCSM: Prototyping a python-based community climate system model
ANZIAM Journal 48 (2010) C1112-C1130
Abstract:
Coupled climate models are multiphysics models comprising multi-ple separately developed codes that are combined into a single physical system. This composition of codes is amenable to a scripting solution, and Python is a language that offers many desirable properties for this task. We have prototyped a Python coupling and control infrastruc-ture for version 3.0 of the Community Climate System Model (ccsm3). Our objective was to improve dramatically ccsm3's already exible coupling facilities to enable research uses of the model not currently supported. We report the progress in the first steps in this effort: the construction of Python bindings for the Model Coupling Toolkit, a key piece of third-party coupling middleware used in ccsm3, and a Python-based ccsm3 coupler (pypcl) application. We report prelim-inary performance results for this new system, which we call pyccsm. We find pyccsm is significantly slower than its Fortran counterpart, and explain how pypcl's performance may be improved to support production runs. We believe our results augur well for the use of Python in the top-level coupling and organisation of large parallel multiphysics and multiscale applications.Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes
Journal of Geophysical Research Atmospheres 115:15 (2010)
Abstract:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20-30 km, reduced from 30-40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15-35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks. Copyright 2010 by the American Geophysical Union.Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model
Climate Dynamics 35:2 (2010) 341-353
Abstract:
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15-20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10-20% along the Gulf Stream SST gradient. © 2009 Springer-Verlag.Stratospheric temperature trends: Impact of ozone variability and the QBO
Climate Dynamics 34:2 (2010) 381-398