The stratospheric wintertime response to applied extratropical torques and its relationship with the annular mode

Climate Dynamics Springer Berlin Heidelberg 44:9-10 (2015) 2513-2537

Authors:

Peter Watson, Lesley Gray

Abstract:

The response of the wintertime Northern Hemisphere (NH) stratosphere to applied extratropical zonally symmetric zonal torques, simulated by a primitive equation model of the middle atmosphere, is presented. This is relevant to understanding the effect of gravity wave drag (GWD) in models and the influence of natural forcings such as the quasi-biennial oscillation (QBO), El Ninõ-Southern Oscillation (ENSO), solar cycle and volcanic eruptions on the polar vortex. There is a strong feedback due to planetary waves, which approximately cancels the direct effect of the torque on the zonal acceleration in the steady state and leads to an EP flux convergence response above the torque’s location. The residual circulation response is very different to that predicted assuming wave feedbacks are negligible. The results are consistent with the predictions of ray theory, with applied westerly torques increasing the meridional potential vorticity gradient, thus encouraging greater upward planetary wave propagation into the stratosphere. The steady state circulation response to torques applied at high latitudes closely resembles the Northern annular mode (NAM) in perpetual January simulations. This behaviour is analogous to that shown by the Lorenz system and tropospheric models. Imposed westerly high-latitude torques lead counter-intuitively to an easterly zonal mean zonal wind (Formula presented.) response at high latitudes, due to the wave feedbacks. However, in simulations with a seasonal cycle, the feedbacks are qualitatively similar but weaker, and the long-term response is less NAM-like and no longer easterly at high latitudes. This is consistent with ray theory and differences in climatological (Formula presented.) between the two types of simulations. The response to a tropospheric wave forcing perturbation is also NAM-like. These results suggest that dynamical feedbacks tend to make the long-term NH extratropical stratospheric response to arbitrary external forcings NAM-like, but only if the feedbacks are sufficiently strong. This may explain why the observed polar vortex responses to natural forcings such as the QBO and ENSO are NAM-like. The results imply that wave feedbacks must be understood and accurately modelled in order to understand and predict the influence of GWD and other external forcings on the polar vortex, and that biases in a model’s climatology will cause biases in these feedbacks.

The stratospheric wintertime response to applied extratropical torques and its relationship with the annular mode

Climate Dynamics 44:9-10 (2015) 2513-2537

Authors:

PAG Watson, LJ Gray

Abstract:

The response of the wintertime Northern Hemisphere (NH) stratosphere to applied extratropical zonally symmetric zonal torques, simulated by a primitive equation model of the middle atmosphere, is presented. This is relevant to understanding the effect of gravity wave drag (GWD) in models and the influence of natural forcings such as the quasi-biennial oscillation (QBO), El Ninõ-Southern Oscillation (ENSO), solar cycle and volcanic eruptions on the polar vortex. There is a strong feedback due to planetary waves, which approximately cancels the direct effect of the torque on the zonal acceleration in the steady state and leads to an EP flux convergence response above the torque’s location. The residual circulation response is very different to that predicted assuming wave feedbacks are negligible. The results are consistent with the predictions of ray theory, with applied westerly torques increasing the meridional potential vorticity gradient, thus encouraging greater upward planetary wave propagation into the stratosphere. The steady state circulation response to torques applied at high latitudes closely resembles the Northern annular mode (NAM) in perpetual January simulations. This behaviour is analogous to that shown by the Lorenz system and tropospheric models. Imposed westerly high-latitude torques lead counter-intuitively to an easterly zonal mean zonal wind (Formula Presented.) response at high latitudes, due to the wave feedbacks. However, in simulations with a seasonal cycle, the feedbacks are qualitatively similar but weaker, and the long-term response is less NAM-like and no longer easterly at high latitudes. This is consistent with ray theory and differences in climatological (Formula Presented.) between the two types of simulations. The response to a tropospheric wave forcing perturbation is also NAM-like. These results suggest that dynamical feedbacks tend to make the long-term NH extratropical stratospheric response to arbitrary external forcings NAM-like, but only if the feedbacks are sufficiently strong. This may explain why the observed polar vortex responses to natural forcings such as the QBO and ENSO are NAM-like. The results imply that wave feedbacks must be understood and accurately modelled in order to understand and predict the influence of GWD and other external forcings on the polar vortex, and that biases in a model’s climatology will cause biases in these feedbacks.

Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

(2015)

Authors:

P Adamson, I Anghel, A Aurisano, G Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, CM Castromonte, S Childress, JAB Coelho, L Corwin, D Cronin-Hennessy, JK de Jong, AV Devan, NE Devenish, MV Diwan, CO Escobar, JJ Evans, E Falk, GJ Feldman, MV Frohne, HR Gallagher, RA Gomes, MC Goodman, P Gouffon, N Graf, R Gran, K Grzelak, A Habig, SR Hahn, J Hartnell, R Hatcher, A Holin, J Huang, J Hylen, GM Irwin, Z Isvan, C James, D Jensen, T Kafka, SMS Kasahara, G Koizumi, M Kordosky, A Kreymer, K Lang, J Ling, PJ Litchfield, P Lucas, WA Mann, ML Marshak, N Mayer, C McGivern, MM Medeiros, R Mehdiyev, JR Meier, MD Messier, WH Miller, SR Mishra, S Moed Sher, CD Moore, L Mualem, J Musser, D Naples, JK Nelson, HB Newman, RJ Nichol, JA Nowak, JO Connor, M Orchanian, S Osprey, RB Pahlka, J Paley, RB Patterson, G Pawloski, A Perch, S Phan-Budd, RK Plunkett, N Poonthottathil, X Qiu, A Radovic, B Rebel, C Rosenfeld, HA Rubin, MC Sanchez, J Schneps, A Schreckenberger, P Schreiner, R Sharma, A Sousa, N Tagg, RL Talaga, J Thomas, MA Thomson, X Tian, A Timmons, SC Tognini, R Toner, D Torretta, J Urheim, P Vahle, B Viren, A Weber, RC Webb, C White, L Whitehead, LH Whitehead, SG Wojcicki, R Zwaska

A dynamical systems explanation of the Hurst effect and atmospheric low-frequency variability.

Scientific reports 5 (2015) 9068

Authors:

Christian LE Franzke, Scott M Osprey, Paolo Davini, Nicholas W Watkins

Abstract:

The Hurst effect plays an important role in many areas such as physics, climate and finance. It describes the anomalous growth of range and constrains the behavior and predictability of these systems. The Hurst effect is frequently taken to be synonymous with Long-Range Dependence (LRD) and is typically assumed to be produced by a stationary stochastic process which has infinite memory. However, infinite memory appears to be at odds with the Markovian nature of most physical laws while the stationarity assumption lacks robustness. Here we use Lorenz's paradigmatic chaotic model to show that regime behavior can also cause the Hurst effect. By giving an alternative, parsimonious, explanation using nonstationary Markovian dynamics, our results question the common belief that the Hurst effect necessarily implies a stationary infinite memory process. We also demonstrate that our results can explain atmospheric variability without the infinite memory previously thought necessary and are consistent with climate model simulations.

IMPETUS: Improving predictions of drought for user decision-making

Taylor & Francis (2015) 289-294