Correction to “Solar influences on climate”
Reviews of Geophysics American Geophysical Union (AGU) 50:1 (2012)
A simple kinematic source of skewness in atmospheric flow fields
Journal of the Atmospheric Sciences 69:2 (2012) 578-590
Abstract:
Geopotential height fields exhibit a well-known pattern of skewness, with distributions that are positively skewed on the poleward side of themidlatitude jets/storm tracks and negatively skewed on the equatorward side. This pattern has often been interpreted as a signature of nonlinear dynamical features, such as blocking highs and cutoff lows, and there is renewed interest in the higher moments of flow variables as indicators of the nature of the underlying dynamics. However, this paper suggests that skewness can arise as a simple kinematic consequence of the presence of jet streams and so may not be a reliable indicator of nonlinear dynamical behavior. In support of this, reanalysis data are analyzed to demonstrate a close link between the jet streams and the skewness patterns. Further evidence is provided by a simple stochastic kinematic model of a jet stream as a Gaussian wind profile. The parameters of this model are fitted to data from the reanalysis and also from an aquaplanet general circulation model. The skewness of the model's geopotential height and zonal wind fields are then compared to those of the original data. This shows that a fluctuating jet stream can produce patterns of skewness that are qualitatively similar to those observed, although the magnitude of the skewness is significantly overestimated by the kinematic model. These results suggest that this simple kinematic effect does contribute to the observed patterns of skewness but that other processes (such as nonlinear dynamics) likely also play a role. © 2012 American Meteorological Society.The north Atlantic jet stream under climate change and its relation to the NAO and EA patterns
Journal of Climate 25:3 (2012) 886-902
Abstract:
This paper describes recent variations of the North Atlantic eddy-driven jet stream and analyzes the mean response of the jet to anthropogenic forcing in climate models. Jet stream changes are analyzed both using a direct measure of the near-surface westerly wind maximum and using an EOF-based approach. This allows jet stream changes to be related to the widely used leading patterns of variability: the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern. Viewed in NAO-EA state space, isolines of jet latitude and speed resemble a distorted polar coordinate system, highlighting the dependence of the jet stream quantities on both spatial patterns. Some differences in the results of the two methods are discussed, but both approaches agree on the general characteristics of the climate models. While there is some agreement between models on a poleward shift of the jet stream in response to anthropogenic forcing, there is still considerable spread between different model projections, especially in winter. Furthermore, the model responses to forcing are often weaker than their biases when compared to a reanalysis. Diagnoses of jet stream changes can be sensitive to the methodologies used, and several aspects of this are also discussed. © 2012 American Meteorological Society.Atmospheric Low Frequency Variability: The Examples of the North Atlantic and the Indian Monsoon
Chapter in Climate Variability - Some Aspects, Challenges and Prospects, IntechOpen (2012)
Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions
Journal of Geophysical Research Atmospheres 117:17 (2012)