The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei

Copernicus GmbH

Authors:

La Lee, Kj Pringle, Cl Reddington, Gw Mann, P Stier, Dv Spracklen, Jr Pierce, Ks Carslaw

Abstract:

<jats:p>Abstract. The global distribution of cloud condensation nuclei (CCN) is the fundamental quantity that determines how changes in aerosols affect climate through changes in cloud drop concentrations, cloud albedo and precipitation. Aerosol-cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day CCN concentrations. Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each monthly-mean model grid cell from an ensemble of 168 one-year model simulations covering the uncertainty space of the 28 parameters. The standard deviation around the mean CCN varies globally between about ±30% of the mean over some marine regions to ±40–100% over most land areas and high latitudes. The results imply that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol-cloud effects on climate. Variance decomposition enables the importance of the parameters for CCN uncertainty to be quantified and ranked from local to global scales. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulphate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulphur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulphate formation during cloud-processing. Most of the 28 parameters are important for CCN uncertainty somewhere on the globe. The results lead to several recommendations for research that would result in improved modelling of cloud-active aerosol on a global scale. </jats:p>

Weak liquid water path response in ship tracks

Authors:

Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, Tristan WP Smith

Weather and climate models in 16-bit arithmetics: Number formats, error mitigation and scope

Authors:

Milan Klöewer, Peter D Duben, Tim N Palmer

nextGEMS: entering the era of kilometer-scale Earth system modeling

Authors:

Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A-M Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H Jungclaus, Noel S Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, Bjorn Stevens