Cold Dust Emission from X-ray AGN in the SCUBA-2 Cosmology Legacy Survey: Dependence on Luminosity, Obscuration and AGN Activity

Monthly Notices Of The Royal Astronomical Society Oxford University Press 454:1 (2015) 419-438

Authors:

Manda Banerji, Richard G McMahon, Chris J Willott, James E Geach, Chris M Harrison, Susannah Alaghband-Zadeh, David Alexander, Nathan Bourne, Kristen EK Coppin, James S Dunlop, Duncan Farrah, Matthew Jarvis, Michal J Michalowski, Matthew Page, Daniel Smith, Mark Swinbank, Myrto Symeonidis, PPVD Werf, Paul P Van der Werf

Abstract:

We study the 850um emission in X-ray selected AGN in the 2 sq-deg COSMOS field using new data from the SCUBA-2 Cosmology Legacy Survey. We find 19 850um bright X-ray AGN in a high-sensitivity region covering 0.89 sq-deg with flux densities of S850=4-10 mJy. The 19 AGN span the full range in redshift and hard X-ray luminosity covered by the sample - 0.71 X-ray AGN - S850=0.71+/-0.08mJy. We explore trends in the stacked 850um flux densities with redshift, finding no evolution in the average cold dust emission over the redshift range probed. For Type 1 AGN, there is no significant correlation between the stacked 850um flux and hard X-ray luminosity. However, in Type 2 AGN the stacked submm flux is a factor of 2 higher at high luminosities. When averaging over all X-ray luminosities, no significant differences are found in the stacked submm fluxes of Type 1 and Type 2 AGN as well as AGN separated on the basis of X-ray hardness ratios and optical-to-infrared colours. However, at log10(LX) >44.4, dependences in average submm flux on the optical-to-infrared colours become more pronounced. We argue that these high luminosity AGN represent a transition from a secular to a merger-driven evolutionary phase where the star formation rates and accretion luminosities are more tightly coupled. Stacked AGN 850um fluxes are compared to the stacked fluxes of a mass-matched sample of K-band selected non-AGN galaxies. We find that at 10.5

The SAMI Pilot Survey: the fundamental and mass planes in three low-redshift clusters

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 451:3 (2015) 2723-2734

Authors:

Nicholas Scott, LMR Fogarty, Matt S Owers, Scott M Croom, Matthew Colless, Roger L Davies, S Brough, Michael B Pracy, Joss Bland-Hawthorn, D Heath Jones, JT Allen, Julia J Bryant, Luca Cortese, Michael Goodwin, Andrew W Green, Iraklis S Konstantopoulos, JS Lawrence, Samuel Richards, Rob Sharp

CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 451:2 (2015) 1460-1481

Authors:

K Kettula, S Giodini, E van Uitert, H Hoekstra, A Finoguenov, M Lerchster, T Erben, C Heymans, H Hildebrandt, TD Kitching, A Mahdavi, Y Mellier, L Miller, M Mirkazemi, L Van Waerbeke, J Coupon, E Egami, L Fu, MJ Hudson, JP Kneib, K Kuijken, HJ McCracken, MJ Pereira, B Rowe, T Schrabback, M Tanaka, M Velander

The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3

Monthly Notices of the Royal Astronomical Society Oxford University Press 453:3 (2015) 2540-2557

Authors:

Russell Johnston, Mattia Vaccari, Matthew Jarvis, Matthew Smith, Elodie Giovannoli, Boris Häußler, Matthew Prescott

Abstract:

We investigate the star-formation rate (SFR) and stellar mass ($M_*$) relation of a star-forming (SF) galaxy sample in the XMM-LSS field to $z\sim 3.0$ using the near-infrared data from the VISTA Deep Extragalactic Observations (VIDEO) survey. Combining VIDEO with broad-band photometry, we use the SED fitting algorithm CIGALE to derive SFRs and $M_*$ and have adapted it to account for the full photometric redshift PDF uncertainty. Applying a SF selection using the D4000 index, we find evidence for strong evolution in the normalisation of the SFR-$M_*$ relation out to $z\sim 3$ and a roughly constant slope of (SFR $\propto M_*^{\alpha}$) $\alpha=0.69\pm0.02$ to $z\sim 1.7$. We find this increases close to unity toward $z\sim2.65$. Alternatively, if we apply a colour selection, we find a distinct turnover in the SFR-$M_*$ relation between $0.7\lesssim z\lesssim2.0$ at the high mass end, and suggest that this is due to an increased contamination from passive galaxies. We find evolution of the specific SFR $\propto(1+z)^{2.60}$ at $\log(M_*)\sim$10.5, out to $z\lesssim2.4$ with an observed flattening beyond $z\sim$ 2 with increased stellar mass. Comparing to a range of simulations we find the analytical scaling relation approaches, that invoke an equilibrium model, a good fit to our data, suggesting that a continual smooth accretion regulated by continual outflows may be a key driver in the overall growth of SFGs.

The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

Monthly Notices Of The Royal Astronomical Society Oxford University Press 453:4 (2015) 4244-4263

Authors:

Imogen Whittam, Julia Riley, Dave Green, Matthew Jarvis, Mattia Vaccari

Abstract:

A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below $\sim 1$ mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the SKADS Simulated Skies; a population of low-redshift starforming galaxies predicted by the simulation is not found in the observed sample.