Angular-momentum pairs in spherical systems: applications to the Galactic centre

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag039

Authors:

Taras Panamarev, Yonadav Barry Ginat, Bence Kocsis

Abstract:

Abstract Consider a system of point masses in a spherical potential. In such systems objects execute planar orbits covering two-dimensional rings or annuli, represented by the angular-momentum vectors, which slowly reorient due to the persistent weak gravitational interaction between different rings. This process, called vector resonant relaxation, is much faster than other processes which change the size/shape of the rings. The interaction is strongest between objects with closely aligned angular-momentum vectors. In this paper, we show that nearly parallel angular-momentum vectors may form stable bound pairs in angular-momentum space. We examine the stability of such pairs against an external massive perturber, and determine the critical separation analogous to the Hill radius or tidal radius in the three-body problem, where the angular-momentum pairs are marginally disrupted, as a function of the perturber’s mass, the orbital inclination, and the radial distance. Angular-momentum pairs or multiples closer than the critical inclination will remain bound and evolve together in angular-momentum-direction space under any external influence, such as anisotropic density fluctuations, or massive perturbers. This study has applications in various astrophysical contexts, including galactic nuclei, in particular the Milky Way’s Galactic centre, globular clusters, or planetary systems. In nuclear star clusters with a central super-massive black hole, we apply this criterion to the disc of young, massive stars, and show that clusters in angular-momentum space may be used to constrain the presence of intermediate-mass black holes or the mass of the nearby gaseous torus.

The Velocity Field Olympics: assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:2 (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

ABSTRACT The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at $z \lesssim 0.05$, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the Fundamental Plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions – including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory – we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding $S_8 = 0.793 \pm 0.035$. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

The JADES Origins Field: A New JWST Deep Field in the JADES Second NIRCam Data Release

The Astrophysical Journal: Supplement Series American Astronomical Society 281:2 (2025) 50

Authors:

Daniel J Eisenstein, Benjamin D Johnson, Brant Robertson, Sandro Tacchella, Kevin Hainline, Peter Jakobsen, Roberto Maiolino, Nina Bonaventura, Andrew J Bunker, Alex J Cameron, Phillip A Cargile, Emma Curtis-Lake, Ryan Hausen, Dávid Puskás, Marcia Rieke, Fengwu Sun, Christopher NA Willmer, Chris Willott, Stacey Alberts, Santiago Arribas, William M Baker, Stefi Baum, Rachana Bhatawdekar, Stefano Carniani, Jacopo Chevallard, Gareth C Jones, Aayush Saxena

Abstract:

We summarize the properties and initial data release of the JADES Origins Field (JOF), the longest single pointing yet imaged with the James Webb Space Telescope (JWST). This field falls within the GOODS-S region about 8′ southwest of the Hubble Ultra Deep Field (HUDF), where it was formed initially in Cycle 1 as a parallel field of HUDF spectroscopic observations within the JWST Advanced Deep Extragalactic Survey (JADES). This imaging was greatly extended in Cycle 2 program 3215, which observed the JOF for 5 days in six medium-band filters, seeking robust candidates for z > 15 galaxies. This program also includes ultradeep parallel NIRSpec spectroscopy (up to 91 hr on source, summing over the dispersion modes) on the HUDF. Cycle 3 observations from program 4540 added 20 hr of NIRCam slitless spectroscopy and F070W imaging to the JOF. With these three campaigns, the JOF was observed for 380 open-shutter hours with NIRCam using 15 imaging filters and two grism bandpasses. Further, parts of the JOF have deep 43 hr MIRI observations in F770W. Taken together, the JOF is one of the most compelling deep fields available with JWST and a powerful window into the early Universe. This paper presents the second data release from JADES, featuring the imaging and catalogs from the year 1 JOF observations.

Semiempirical constraints on the HI mass function of star-forming galaxies and Ω HI at z ∼ 0.37 from interferometric surveys

Astronomy & Astrophysics EDP Sciences 704 (2025) A152-A152

Authors:

F Sinigaglia, A Bianchetti, G Rodighiero, L Mayer, M Dessauges-Zavadsky, E Elson, M Vaccari, MJ Jarvis

Abstract:

Context. The H I mass function (HIMF) is a crucial tool for understanding the evolution of the H I content in galaxies over cosmic time and, hence, to constraining both the baryon cycle in galaxy evolution and the reionization history of the Universe. Aims. We aim to derive semiempirical constraints at z  ∼ 0.37 by combining literature results on the stellar mass function from optical surveys with recent findings on the M HI  −  M scaling relation derived via spectral stacking analysis applied to 21 cm line interferometric data from the MIGHTEE and CHILES surveys, conducted with the MeerKAT and VLA radio telescopes, respectively. Methods. We drew synthetic stellar mass samples directly from the publicly available results underlying the analysis of the COSMOS2020 galaxy photometric sample. We then converted M into M HI using analytical fitting functions to the data points from H I stacking. We next fit a Schechter function to the median HIMF from all the samples via Monte Carlo Markov chains. We finally derived the posterior distribution for Ω HI by integrating the models for the HIMF built from the posteriors samples of the Schechter parameters. Results. We find a deviation of the HIMF at z  ∼ 0.37 from the results at z  ∼ 0 from the ALFALFA survey and at z  ∼ 1 from uGMRT data. Our results for Ω HI are in broad agreement with other literature results and follow the overall trend on Ω HI as a function of redshift. The derived value Ω HI = (7.02 +0.59 −0.52 ) × 10 −4 at z  ∼ 0.37 from the combined analysis deviates by ∼2.9 σ from the ALFALFA result at z  ∼ 0. Conclusions. Our findings regarding the HIMF and Ω HI derived from deep, state-of-the-art interferometric surveys differ from previous literature results at z  ∼ 0 and z  ∼ 1. We are unable to confirm at this stage whether these differences are due to cosmic evolution consistent with a smooth transition of the H I content of galaxies over the last 8 Gyr or due to selection biases and systematics.

The impact of galaxy bias on cross-correlation tomography

Monthly Notices of the Royal Astronomical Society Oxford University Press 545:2 (2025) staf2125

Authors:

Sara Maleubre, Matteo Zennaro, David Alonso, Ian G McCarthy, Matthieu Schaller, Joop Schaye

Abstract:

The cross-correlation of galaxies at different redshifts with other tracers of the large-scale structure can be used to reconstruct the cosmic mean of key physical quantities, and their evolution over billions of years, at high precision. However, a correct interpretation of these measurements must ensure that they are independent of the clustering properties of the galaxy sample used. In this paper, we explore different prescriptions to extract tomographic reconstruction measurements and use the flamingo hydrodynamic simulations to show that a robust estimator, independent of the small-scale galaxy bias, can be constructed. We focus on the tomographic reconstruction of the halo bias-weighted electron pressure and star formation density , which can be reconstructed from tomographic analysis of Sunyaev–Zel’dovich and cosmic infrared background maps, respectively. We show that these quantities can be reconstructed with an accuracy of 1–3 per cent over a wide range of redshifts, using different galaxy samples. We also show that these measurements can be accurately interpreted using the halo model, assuming that a sufficiently reliable model can be constructed for the halo mass function, large-scale halo bias, and for the dependence of the physical quantities being reconstructed on halo mass.