The Velocity Field Olympics: assessing velocity field reconstructions with direct distance tracers
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:2 (2025) staf1960
Abstract:
The JADES Origins Field: A New JWST Deep Field in the JADES Second NIRCam Data Release
The Astrophysical Journal: Supplement Series American Astronomical Society 281:2 (2025) 50
Abstract:
We summarize the properties and initial data release of the JADES Origins Field (JOF), the longest single pointing yet imaged with the James Webb Space Telescope (JWST). This field falls within the GOODS-S region about 8′ southwest of the Hubble Ultra Deep Field (HUDF), where it was formed initially in Cycle 1 as a parallel field of HUDF spectroscopic observations within the JWST Advanced Deep Extragalactic Survey (JADES). This imaging was greatly extended in Cycle 2 program 3215, which observed the JOF for 5 days in six medium-band filters, seeking robust candidates for z > 15 galaxies. This program also includes ultradeep parallel NIRSpec spectroscopy (up to 91 hr on source, summing over the dispersion modes) on the HUDF. Cycle 3 observations from program 4540 added 20 hr of NIRCam slitless spectroscopy and F070W imaging to the JOF. With these three campaigns, the JOF was observed for 380 open-shutter hours with NIRCam using 15 imaging filters and two grism bandpasses. Further, parts of the JOF have deep 43 hr MIRI observations in F770W. Taken together, the JOF is one of the most compelling deep fields available with JWST and a powerful window into the early Universe. This paper presents the second data release from JADES, featuring the imaging and catalogs from the year 1 JOF observations.Semiempirical constraints on the HI mass function of star-forming galaxies and Ω HI at z ∼ 0.37 from interferometric surveys
Astronomy & Astrophysics EDP Sciences 704 (2025) A152-A152
Abstract:
The impact of galaxy bias on cross-correlation tomography
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2125
Abstract:
Abstract The cross-correlation of galaxies at different redshifts with other tracers of the large-scale structure can be used to reconstruct the cosmic mean of key physical quantities, and their evolution over billions of years, at high precision. However, a correct interpretation of these measurements must ensure that they are independent of the clustering properties of the galaxy sample used. In this paper we explore different prescriptions to extract tomographic reconstruction measurements and use the FLAMINGO hydrodynamic simulations to show that a robust estimator, independent of the small-scale galaxy bias, can be constructed. We focus on the tomographic reconstruction of the halo bias-weighted electron pressure 〈bPe〉 and star-formation density 〈bρSFR〉, which can be reconstructed from tomographic analysis of Sunyaev-Zel’dovich and cosmic infrared background maps, respectively. We show that these quantities can be reconstructed with an accuracy of 1-3% over a wide range of redshifts, using different galaxy samples. We also show that these measurements can be accurately interpreted using the halo model, assuming a sufficiently reliable model can be constructed for the halo mass function, large-scale halo bias, and for the dependence of the physical quantities being reconstructed on halo mass.A 15 Mpc rotating galaxy filament at redshift z = 0.032
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:4 (2025) 4306-4316