The Q/U imaging experiment instrument

Astrophysical Journal American Astronomical Society 768:1 (2013) 1-28

Authors:

C Bischoff, A Brizius, I Buder, Y Chinone, K Cleary, RN Dumoulin, A Kusaka, R Monsalve, SK Naess, LB Newburgh, G Nixon, R Reeves, KM Smith, K Vanderlinde, IK Wehus, M Bogdan, R Bustos, Church, R Davis, C Dickinson, HK Eriksen, T Gaier, JO Gundersen, M Hasegawa, M Hazumi, C Holler, KM Huffenberger, WA Imbriale, K Ishidoshiro, Michael Jones, P Kangaslahti, DJ Kapner, CR Lawrence, EM Leitch, M Limon, JJ McMahon, AD Miller, M Nagai, H Nguyen, TJ Pearson, L Piccirillo, SJE Radford, ACS Readhead, JL Richards, D Samtleben, M Seiffert, MC Shepherd, ST Staggs, O Tajima

Abstract:

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales(~1°). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 μKs1/2) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 μKs1/2 at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range ℓ ~ 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument.

The Suzaku view of highly ionized outflows in AGN - I. Statistical detection and global absorber properties

Monthly Notices of the Royal Astronomical Society 430:1 (2013) 60-80

Authors:

J Gofford, JN Reeves, F Tombesi, V Braito, TJ Turner, L Miller, M Cappi

Abstract:

We present the results of a new spectroscopic study of Fe K-band absorption in active galactic nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Heα and/or Fe XXVI Lyα absorption lines in a large sample of 51 Type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find that statistically significant absorption is detected at E ≳ 6.7 keV in 20/51 sources at the PMC ≥ 95 per cent level, which corresponds to ~40 per cent of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available X-ray imaging spectrometer detectors, which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Heα and Fe XXVI Lyα at a common velocity shift. From xstar fitting the mean column density and ionization parameter for the Fe K absorption components are log (NH/cm-2) ≈ 23 and log (ξ/erg cm s-1) ≈ 4.5, respectively. Measured outflow velocities span a continuous range from <1500 km s-1 up to ~100 000 km s-1, with mean and median values of ~0.1 c and ~0.056 c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly ionized circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

GAMA/H-ATLAS: THE DUST OPACITY–STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

The Astrophysical Journal American Astronomical Society 766:1 (2013) 59

Authors:

MW Grootes, RJ Tuffs, CC Popescu, B Pastrav, E Andrae, M Gunawardhana, LS Kelvin, J Liske, M Seibert, EN Taylor, Alister W Graham, M Baes, IK Baldry, N Bourne, S Brough, A Cooray, A Dariush, G De Zotti, SP Driver, L Dunne, H Gomez, AM Hopkins, R Hopwood, M Jarvis, J Loveday, S Maddox, BF Madore, MJ Michałowski, P Norberg, HR Parkinson, M Prescott, ASG Robotham, DJB Smith, D Thomas, E Valiante

Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

Monthly Notices of the Royal Astronomical Society 429:4 (2013) 2858-2880

Authors:

L Miller, C Heymans, TD Kitching, L van Waerbeke, T Erben, H Hildebrandt, H Hoekstra, Y Mellier, BTP Rowe, J Coupon, JP Dietrich, L Fu, J Harnois-D́eraps, MJ Hudson, M Kilbinger, K Kuijken, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB < 24.7, for galaxies with signal-to-noise ratio νSN ( 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

CFHTLenS: Testing the laws of gravity with tomographic weak lensing and redshift-space distortions

Monthly Notices of the Royal Astronomical Society 429:3 (2013) 2249-2263

Authors:

F Simpson, C Heymans, D Parkinson, C Blake, M Kilbinger, J Benjamin, T Erben, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, J Coupon, L Fu, J Harnois-Déraps, MJ Hudson, K Kuijken, B Rowe, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

Dark energy may be the first sign of new fundamental physics in the Universe, taking either a physical form or revealing a correction to Einsteinian gravity. Weak gravitational lensing and galaxy peculiar velocities provide complementary probes of general relativity, and in combination allow us to test modified theories of gravity in a unique way.We perform such an analysis by combining measurements of cosmic shear tomography from the Canada-France- Hawaii Telescope Lensing Survey (CFHTLenS) with the growth of structure from theWiggleZ Dark Energy Survey and the Six-degree-Field Galaxy Survey, producing the strongest existing joint constraints on the metric potentials that describe general theories of gravity. For scaleindependent modifications to the metric potentials which evolve linearly with the effective dark energy density, we find present-day cosmological deviations in the Newtonian potential and curvature potential from the prediction of general relativity to be δψ/ψ = 0.05 ± 0.25 and δφ/φ=-0.05 ± 0.3, respectively (68 per cent confidence limits). © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.