Feeding compact bulges and supermassive black holes with low angular-momentum cosmic gas at high redshift
ArXiv 1112.2479 (2011)
Abstract:
We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive halos falls nearly radially to their very centre on extremely short timescales. This process results in the formation of very compact bulges with specific angular momentum a factor 5-30$smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates both from segregation and effective cancellation when the gas flows to the centre of the halo along well defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer halos which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low-angular momentum gas to the centre of very massive halos at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around $10^9$M$_\odot$ at an epoch when the Universe is barely 1 Gyr old.Feeding compact bulges and supermassive black holes with low angular-momentum cosmic gas at high redshift
(2011)
THE zCOSMOS–SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS**Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Program IDs 079.A-0341, 081.A-0672, and 183.A-0781). Also based on observations with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, and with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology.
The Astrophysical Journal American Astronomical Society 743:1 (2011) 86
The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
Proceedings of the IAU (2011)
Abstract:
Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z {\approx} 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z {\approx} 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved.Rigging dark haloes: Why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?
Monthly Notices of the Royal Astronomical Society 418:4 (2011) 2493-2507