The extreme, red afterglow of GRB 060923A: distance or dust?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 388:4 (2008) 1743-1750

Authors:

NR Tanvir, AJ Levan, E Rol, RLC Starling, J Gorosabel, RS Priddey, D Malesani, P Jakobsson, PT O'Brien, AO Jaunsen, J Hjorth, JPU Fynbo, A Melandri, A Gomboc, B Milvang-Jensen, AS Fruchter, M Jarvis, CAC Fernandes, T Wold

Towards a new classification of early-type galaxies:: An integral-field view

PATHWAYS THROUGH AN ECLECTIC UNIVERSE 390 (2008) 227-+

Authors:

Jesus Falcon-Barroso, Roland Bacon, Roger L Davies, P Tim de Zeeuw, Eric Emsellem, Davor Krajnovic, Harald Kuntschner, Richard M McDermid, Reynier F Peletier, Marc Sarzi, Glenn van de Ven

A high performance horn for large format focal plane arrays

Proceedings of the Eighteenth International Symposium on Space Terahertz Technology 2007, ISSTT 2007 (2007) 199-210

Authors:

G Yassin, P Kittara, A Jiralucksanawong, S Wangsuya, J Leech, M Jones

Abstract:

We describe the design and performance of an easy to machine horn which exhibits excellent beam circularity and low cross polarisation over a relatively large bandwidth. No grooves are machined into the horn walls but, alternatively, flare angle discontinuities are generated along the horn profile. In other words, the horns will have several flare angles or sections instead of one. For example, if the horn consists of two flare angles, it could then be considered as a conventional Potter horn. As can be seen below, even with this simple design, excellent radiation patterns can be obtained over 15% bandwidth. The bandwidth could be further increased by adding more subsections with 30% bandwidth obtained when the profile is based on 4 sections. The operation of the horn is based on generating higher order modes at the correct amplitude ratio and phase with respect to the incident TE11 mode in the circular waveguide, which is achieved by accurate determination of the magnitude and location of the flare steps. This in turn yields a field distribution at the horn aperture that has low sidelobes and cross polarization in the radiation pattern. A key component in the design package is the optimization software that searches for the correct magnitude and location of the flare discontinuities. We have generated a software package based on the combination of modal matching, genetic algorithm (GA) and simplex optimization. The genetic code is first used to locate the proximity of the global minimum. The set of parameters obtained are then used as a starting point for the simplex method, which refines the parameters to the required accuracy. We shall illustrate our method by showing radiation patterns using two and three step discontinuities and also patterns for a spline profiled horn based on work by other investigators who used different optimization techniques.

Clover-measuring the CMB B-mode polarisation

Proceedings of the Eighteenth International Symposium on Space Terahertz Technology 2007, ISSTT 2007 (2007) 238-243

Authors:

CE North, PAR Ade, MD Audley, C Baines, RA Battye, ML Brown, P Cabella, PG Calisse, AD Challinor, WD Duncan, P Ferreira, WK Gear, D Glowacka, DJ Goldie, PK Grimes, M Halpern, V Haynes, GC Hilton, KD Irwin, BR Johnson, ME Jones, AN Lasenby, PJ Leahy, J Leech, S Lewis, B Maffei, L Martinis, P Mauskopf, SJ Melhuish, D O'Dea, SM Parsley, L Piccirillo, G Pisano, CD Reintsema, G Savini, R Sudiwala, D Sutton, AC Taylor, G Teleberg, D Titterington, V Tsaneva, C Tucker, R Watson, S Withington, G Yassin, J Zhang

Abstract:

We describe the objectives, design and predicted performance of Clover, a fully-funded, UK-led experiment to measure the B-mode polarisation of the Cosmic Microwave Background (CMB). Three individual telescopes will operate at 97, 150 and 225 GHz, each populated by up to 256 horns. The detectors, TES bolometers, are limited by unavoidable photon noise, and coupled to an optical design which gives very low systematic errors, particularly in cross-polarisation. The telescopes will sit on three-axis mounts on a site in the Atacama Desert. The angular resolution of around 8 ́ and sky coverage of around 1000 deg2 provide multipole coverage of 20<ℓ<1000. Combined with the high sensitivity, this should allow the B-mode signal to be measured (or constrained) down to a level corresponding to a tensor-to-scalar ratio of r = 0.01, providing the emission from polarised foregrounds can be subtracted. This in turn will allow constraints to be placed on the energy scale of inflation, providing an unprecedented insight into the early history of the Universe.

UV-optical colors as probes of early-type galaxy evolution

Astrophysical Journal, Supplement Series 173:2 (2007) 619-642

Authors:

S Kaviraj, K Schawinski, JEG Devriendt, I Ferreras, S Khochfar, SJ Yoon, SK Yi, JM Deharveng, A Boselli, T Barlow, T Conrow, K Forster, PG Friedman, DC Martin, P Morrissey, S Neff, D Schiminovich, M Seibert, T Small, T Wyder, L Bianchi, J Donas, T Heckman, YW Lee, B Madore, B Milliard, RM Rich, A Szalay

Abstract:

We have studied ∼2100 early-type galaxies in the SDSS DR3 which have been detected by the GALEX Medium Imaging Survey (MIS), in the redshift range O < z < 0.1.1. Combining GALEXUV photometry with corollary optical data from the SDSS, we find that, at a 95% confidence level, at least ∼30% of galaxies in this sample have UV to optical colors consistent with some recent star formation within the last Gyr. In particular, galaxies with an NUV - r color less than 5.5 are very likely to have experienced such recent star formation, taking into account the possibility of a contribution to NUV flux from the UV upturn phenomenon. We find quantitative agreement between the observations and the predictions of a semianalytical ACDM hierarchical merger model and deduce that early-type galaxies in the redshift range 0 < z < 0.11 have ∼ 1 % -3 % of their stellar mass in stars less than 1 Gyr old. The average age of this recently formed population is ∼300-500 Myr. We also find that "monolithically" evolving galaxies, where recent star formation can be driven solely by recycled gas from stellar mass loss, cannot exhibit the blue colors (NUV - r < 5.5) seen in a significant fraction (∼30%) of our observed sample. © 2007. The American Astronomical Society. All rights reserved.