Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests

Mon.Not.Roy.Astron.Soc. 369 (2006) 909-920

Authors:

JA Rubino-Martin, AM Aliaga, RB Barreiro, RA Battye, P Carreira, K Cleary, RD Davies, RJ Davis, C Dickinson, R Genova-Santos, K Grainge, CM Gutierrez, YA Hafez, MP Hobson, ME Jones, R Kneissl, K Lancaster, A Lasenby, JP Leahy, K Maisinger, E Martinez-Gonzalez, GG Pooley, N Rajguru, R Rebolo, JL Sanz, RDE Saunders, RS Savage, A Scaife, P Scott, A Slosar, AC Taylor, D Titterington, E Waldram, RA Watson

Abstract:

(Abridged) We have used the Rayner & Best (1989) smooth tests of goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data. Out of the 41 published VSA individual pointings dedicated to cosmological observations, 37 are found to be consistent with Gaussianity, whereas four pointings show deviations from Gaussianity. In two of them, these deviations can be explained as residual systematic effects of a few visibility points which, when corrected, have a negligible impact on the angular power spectrum. The non-Gaussianity found in the other two (adjacent) pointings seems to be associated to a local deviation of the power spectrum of these fields with respect to the common power spectrum of the complete data set, at angular scales of the third acoustic peak (l = 700-900). No evidence of residual systematics is found in this case, and unsubstracted point sources are not a plausible explanation either. If those visibilities are removed, a cosmological analysis based on this new VSA power spectrum alone shows no differences in the parameter constraints with respect to our published results, except for the physical baryon density, which decreases by 10 percent. Finally, the method has been also used to analyse the VSA observations in the Corona Borealis supercluster region (Genova-Santos et al. 2005), which show a strong decrement which cannot be explained as primordial CMB. Our method finds a clear deviation (99.82%) with respect to Gaussianity in the second-order moment of the distribution, and which can not be explained as systematic effects. A detailed study shows that the non-Gaussianity is produced in scales of l~500, and that this deviation is intrinsic to the data (in the sense that can not be explained in terms of a Gaussian field with a different power spectrum).

The Birth of Molecular Clouds: Formation of Atomic Precursors in Colliding Flows

(2006)

Authors:

F Heitsch, AD Slyz, JEG Devriendt, LW Hartmann, A Burkert

Variable iron-line emission near the black hole of Markarian 766

ArXiv astro-ph/0605130 (2006)

Authors:

L Miller, TJ Turner, JN Reeves, IM George, D Porquet, K Nandra, M Dovciak

Abstract:

We investigate the link between ionised Fe X-ray line emission and continuum emission in the bright nearby AGN, Mrk 766. A new long (433 ks) XMM-Newton observation is analysed, together with archival data from 2000 and 2001. The contribution from ionised line emission is measured and its time variations on short (5-20 ks) timescales are correlated with the continuum emission. The ionised line flux is found to be highly variable and to be strongly correlated with the continuum flux, demonstrating an origin for the ionised line emission that is co-located with the continuum emission. Most likely the emission is ionised reflection from the accretion disc within a few A.U. of the central black hole, and its detection marks the first time that such an origin has been identified other than by fitting to spectral line profiles. Future observations may be able to measure a time lag and hence achieve reverberation mapping of AGN at X-ray energies.

On the evolution of the black hole: spheroid mass ratio

\mnras 368 (2006) 1395-1403-1395-1403

Authors:

RJ McLure, MJ Jarvis, TA Targett, JS Dunlop, PN Best

Investigating radio-loud AGN with multi-wavelength surveys

Astronomische Nachrichten 327:2-3 (2006) 249-257

Abstract:

In this review we highlight what has been gained from a host of surveys covering a large proportion of the electromagnetic spectrum with respect to active galactic nuclei with emphasis placed on the powerful high-redshift radio galaxies and radio-loud quasars. We focus on recent results which consider the cosmic evolution of radio galaxies and radio-loud quasars, their host galaxies and black-hole masses. We then briefly highlight the potential of combining surveys at other wavelengths, such as the SDSS and Spitzer surveys, for investigating these topics. Finally, we look forward to the new parameter space which will be opened up with the radio telescopes of the future, namely the LOFAR and the SKA. These new telescopes are likely to lead to a shift in radio survey science. The survey depths that are within the reach of these telescopes will mean that the dominant populations will no longer be AGN, but starburst and 'normal' galaxy populations out to z ≳ 2. However, the SKA will also have the ability to find and measure redshifts for every moderately powerful radio AGN in the Universe, providing a new and unique view of galaxy formation and evolution. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.