GALICS III: Predicted properties for Lyman Break Galaxies at redshift 3

ArXiv astro-ph/0310071 (2003)

Authors:

J Blaizot, B Guiderdoni, JEG Devriendt, FR Bouchet, S Hatton, F Stoehr

Abstract:

This paper illustrates how mock observational samples of high-redshift galaxies with sophisticated selection criteria can be extracted from the predictions of GALICS, a hybrid model of hierarchical galaxy formation that couples the outputs of large cosmological simulations and semi-analytic recipes to describe dark matter collapse and the physics of baryons respectively. As an example of this method, we focus on the properties of Lyman Break Galaxies at redshift 3. With the MOMAF software package described in a companion paper, we generate a mock observational sample with selection criteria as similar as possible to those implied in the actual observations of z = 3 LBGs by Steidel et al.(1995). Our model predictions are in good agreement with the observed number density and 2D correlation function. We investigate the optical/IR luminosity budget as well as several other physical properties of LBGs and find them to be in general agreement with observed values. Looking into the future of these LBGs we predict that 75% of them end up as massive ellipticals today, even though only 35% of all our local ellipticals are predicted to have a LBG progenitor. In spite of some shortcomings, this new 'mock observation' method clearly represents a necessary first step toward a more accurate comparison between hierarchical models of galaxy formation and real observational surveys.

GALICS III: Predicted properties for Lyman Break Galaxies at redshift 3

(2003)

Authors:

J Blaizot, B Guiderdoni, JEG Devriendt, FR Bouchet, S Hatton, F Stoehr

MoMaF : The Mock Map Facility

ArXiv astro-ph/0309305 (2003)

Authors:

J Blaizot, Y Wadadekar, B Guiderdoni, S Colombi, E Bertin, FR Bouchet, JEG Devriendt, S Hatton

Abstract:

We present the Mock Map Facility, a powerful tool to generate mock catalogues or images from semi-analytically post-processed snapshots of cosmological N-body simulations. The paper describes in detail an efficient technique to create such mocks from the GALICS semi-analytic model, providing the reader with an accurate quantification of the artifacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal -- typically peaking at less than 10 percent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite volume effects, and show that it vanishes at scales larger than about a tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with GALICS and MOMAF compare well to K-band observations and to the 2dFGRS. Given finite volume effects, we also show that the model can reproduce the APM angular correlation function. The MOMAF results discussed here are made publicly available to the astronomical community through a public database. Moreover, a user-friendly Web interface (http://galics.iap.fr) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.

MoMaF : The Mock Map Facility

(2003)

Authors:

J Blaizot, Y Wadadekar, B Guiderdoni, S Colombi, E Bertin, FR Bouchet, JEG Devriendt, S Hatton

Turbulent Ambipolar Diffusion: Numerical Studies in 2D

ArXiv astro-ph/0309306 (2003)

Authors:

F Heitsch, EG Zweibel, AD Slyz, JEG Devriendt

Abstract:

Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weak. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in astrophysical problems to increase transport rates above the (very slow) laminar values predicted by kinetic theory. We describe a series of numerical experiments addressing the problem of turbulent transport of magnetic fields in weakly ionized gases. We show, subject to various geometrical and physical restrictions, that turbulence in a weakly ionized medium rapidly diffuses the magnetic flux to mass ratio through the buildup of appreciable ion-neutral drifts on small scales. These results are applicable to the fieldstrength - density correlation in the ISM, as well as the merging of flux systems such as protostar and accretion disk fields or protostellar jets with ambient matter, and the vertical transport of galactic magnetic fields.