Caught in the rhythm II: Competitive alignments of satellites with their inner halo and central galaxy
Abstract:
The anisotropic distribution of satellites around the central galaxy of their host halo is well-documented. However the relative impact of baryons and dark matter in shaping this distribution is still debated. Using the simulation Horizon-AGN, the angular distribution of satellite galaxies with respect to their central counterpart and halo is quantified. Below one Rvir, satellites cluster more strongly in the plane of the central, rather than merely tracing the shape of their host halo. This is due to the increased isotropy of inner haloes acquired through their inside-out assembly in vorticity-rich flows along the cosmic web. While the effect of centrals decreases with distance, halos' triaxiality increases, impacting more and more the satellite's distribution. Effects become comparable just outside one virial radius. Above this scale, the filamentary infall also impacts the satellites distribution, dominating above two virial radii. The central's morphology plays a governing role: the alignment w.r.t. the central plane is four times stronger in haloes hosting stellar discs than in spheroids. But the impact of the galactic plane decreases for lower satellite-to-central mass ratios, suggesting this might not hold for dwarf satellites of the Local group. The orientation of the Milky-Way's satellites traces their cosmic filament, their level of coplanarity is consistent with systems of similar mass and cosmic location in Horizon-AGN. However, the strong impact of galactic planes in massive groups and clusters bounds the likelihood of finding a relaxed region where satellites can be used to infer halo shape. The minor-to-major axis ratios for haloes with log(M0/Msun)>13.5 is underestimated by 10%. This error soars quickly to 30-40% for individual halo measurements.Comparing Galaxy Clustering in Horizon-AGN Simulated Lightcone Mocks and VIDEO Observations
Abstract:
Hydrodynamical cosmological simulations have recently made great advances in reproducing galaxy mass assembly over cosmic time - as often quantified from the comparison of their predicted stellar mass functions to observed stellar mass functions from data. In this paper we compare the clustering of galaxies from the hydrodynamical cosmological simulated lightcone Horizon-AGN, to clustering measurements from the VIDEO survey observations. Using mocks built from a VIDEO-like photometry, we first explore the bias introduced into clustering measurements by using stellar masses and redshifts derived from SED-fitting, rather than the intrinsic values. The propagation of redshift and mass statistical and systematic uncertainties in the clustering measurements causes us to underestimate the clustering amplitude. We find then that clustering and halo occupation distribution (HOD) modelling results are qualitatively similar in Horizon-AGN and VIDEO. However at low stellar masses Horizon-AGN underestimates the observed clustering by up to a factor of ~3, reflecting the known excess stellar mass to halo mass ratio for Horizon-AGN low mass haloes, already discussed in previous works. This reinforces the need for stronger regulation of star formation in low mass haloes in the simulation. Finally, the comparison of the stellar mass to halo mass ratio in the simulated catalogue, inferred from angular clustering, to that directly measured from the simulation, validates HOD modelling of clustering as a probe of the galaxy-halo connection.Cosmic CARNage I: on the calibration of galaxy formation models
MNRAS