Cosmological Simulations for Combined-Probe Analyses: Covariance and Neighbour-Exclusion Bias
Abstract:
We present a public suite of weak lensing mock data, extending the Scinet Light Cone Simulations (SLICS) to simulate cross-correlation analyses with different cosmological probes. These mocks include KiDS-450- and LSST-like lensing data, cosmic microwave background lensing maps and simulated spectroscopic surveys that emulate the GAMA, BOSS and 2dFLenS galaxy surveys. With 817 independent realisations, our mocks are optimised for combined-probe covariance estimation, which we illustrate for the case of a joint measurement involving cosmic shear, galaxy-galaxy lensing and galaxy clustering from KiDS-450 and BOSS data. With their high spatial resolution, the SLICS are also optimal for predicting the signal for novel lensing estimators, for the validation of analysis pipelines, and for testing a range of systematic effects such as the impact of neighbour-exclusion bias on the measured tomographic cosmic shear signal. For surveys like KiDS and DES, where the rejection of neighbouring galaxies occurs within ~2 arcseconds, we show that the measured cosmic shear signal will be biased low, but by less than a percent on the angular scales that are typically used in cosmic shear analyses. The amplitude of the neighbour-exclusion bias doubles in deeper, LSST-like data. The simulation products described in this paper are made available at http://slics.roe.ac.uk/.Disk dominated galaxies retain their shapes below $z = 1.0$
Abstract:
The high abundance of disk galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their 3D shape distribution in the COSMOS galaxy survey. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. We find a moderate bias for the inferred average disk circularity and relative thickness with respect to the disk radius, but a large bias on the dispersion of these quantities. Applying the 3D shape reconstruction method on COSMOS data, we find no significant dependence of the inferred 3D shape distribution on redshift. The relative disk thickness shows a significant mass dependence which can be accounted for by the scaling of disk radius with galaxy mass. We conclude that the shapes of disk dominated galaxies are overall not subject to disruptive merging or feedback events below redshift $z=1.0$. This favours a scenario where these disks form early and subsequently undergo a tranquil evolution in isolation. In addition, our study shows that the observed 2D shapes of disk dominated galaxies can be well fitted using an ellipsoidal model for the galaxy 3D morphology combined with a Gaussian model for the 3D axes ratio distribution, confirming findings from similar work reported in the literature. Such an approach allows to build realistic mock catalogs with intrinsic galaxy shapes that will be essential for the study of intrinsic galaxy alignment as a contaminant of weak lensing surveys.Dynamical modeling of SAURON galaxies
Proceedings of IUTAM Symposia and Summer Schools IUTAM 3
Abstract:
We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschild's numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.
Early-type galaxy spin evolution in the Horizon-AGN simulation
The Astrophysical Journal University of Chicago Press