Antiferromagnetic half-skyrmions and bimerons at room temperature

Nature Springer Nature 590:7844 (2021) 74-79

Authors:

Hariom Jani, Jheng-Cyuan Lin, Jiahao Chen, Jack Harrison, Francesco Maccherozzi, Jonathan Schad, Saurav Prakash, Chang-Beom Eom, A Ariando, T Venkatesan, Paolo G Radaelli

Abstract:

In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions1,2,3,4,5,6,7,8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9,10,11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13,14,15,16,17,18,19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9,10,11,23.

Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes

Nature Materials Nature Research 23:5 (2024) 619-626

Authors:

Hariom Jani, Jack Harrison, Sonu Hooda, Saurav Prakash, Proloy Nandi, Junxiong Hu, Zhiyang Zeng, Jheng-Cyuan Lin, Charles Godfrey, Ganesh ji Omar, Tim A Butcher, Jörg Raabe, Simone Finizio, Aaron Voon-Yew Thean, A Ariando, Paolo G Radaelli

Abstract:

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show—via transmission-based antiferromagnetic vector mapping—that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.

Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry

Nature Materials Springer Nature 23:2 (2023) 205-211

Authors:

Anthony KC Tan, Hariom Jani, Michael Högen, Lucio Stefan, Claudio Castelnovo, Daniel Braund, Alexandra Geim, Annika Mechnich, Matthew SG Feuer, Helena S Knowles, Ariando Ariando, Paolo G Radaelli, Mete Atatüre

Abstract:

Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet—haematite—hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.

Room temperature control of axial and basal antiferromagnetic anisotropies using strain

(2025)

Authors:

Jack Harrison, Junxiong Hu, Charles Godfrey, Jheng-Cyuan Lin, Tim A Butcher, JÃ rg Raabe, Simone Finizio, Hariom Jani, Paolo G Radaelli

Electromechanically reconfigurable terahertz stereo metasurfaces

Advanced Materials Wiley (2024) 2402069

Authors:

Saurav Prakash, Prakash Pitchappa, Piyush Agrawal, Hariom Jani, Yunshan Zhao, Abhishek Kumar, John Thong, Jian Linke, Ariando Ariando, Ranjan Singh, Thirumalai Venkatesan

Abstract:

Dynamic terahertz devices are vital for the next generation of wireless communication, sensing, and non-destructive imaging technologies. Metasurfaces have emerged as a paradigm-shifting platform, offering varied functionalities, miniaturization, and simplified fabrication compared to their 3D counterparts. However, the presence of in-plane mirror symmetry and reduced degree of freedom impose fundamental limitations on achieving advanced chiral response, beamforming, and reconfiguration capabilities. In this work, a platform composed of electrically actuated resonators that can be colossally reconfigured between planar and 3D geometries is demonstrated. To illustrate the platform, metadevices with 3D Split Ring Resonators are fabricated, wherein two counteracting driving forces are combined: i) folding induced by stress mismatch, which enables non-volatile state design and ii) unfolding triggered by the strain associated with insulator-to-metal transition in VO2, which facilitates volatile structural reconfiguration. This large structural reconfiguration space allows for resonance mode switching, widely tunable magnetic and electric polarizabilities, and increased frequency agility. Moreover, the unique properties of VO2, such as the hysteretic nature of its phase transition is harnessed to demonstrate a multi-state memory. Therefore, these VO2 integrated metadevices are highly attractive for the realization of 6G communication devices such as reconfigurable intelligent surfaces, holographic beam formers, and spatial light modulators.