Characterizing volcanic ash density and its implications on settling dynamics

Journal of Geophysical Research: Atmospheres American Geophysical Union 129:2 (2024) e2023JD039903

Authors:

Woon Sing Lau, Roy Grainger, Isabelle Taylor

Abstract:

Volcanic ash clouds are carefully monitored as they present a significant hazard to humans and aircraft. The primary tool for forecasting the transport of ash from a volcano is dispersion modelling. These models make a number of assumptions about the size, sphericity and density of the ash particles. Few studies have measured the density of ash particles or explored the impact that the assumption of ash density might have on the settling dynamics of ash particles. In this paper, the raw apparent density of 23 samples taken from 15 volcanoes are measured with gas pycnometry, and a negative linear relationship is found between the density and the silica content. For the basaltic ash samples, densities were measured for different particle sizes, showing that the density is approximately constant for particles smaller than 100 µm, beyond which it decreases with size. While this supports the current dispersion model used by the London Volcanic Ash Advisory Centre (VAAC), where the density is held at a constant (2.3 g cm-3), inputting the measured densities into a numerical simulation of settling velocity reveals a primary effect from the silica content changing this constant. The VAAC density overestimates ash removal times by up to 18 %. These density variations, including those varying with size beyond 100 µm, also impact short-range particle-size distribution (PSD) measurements and satellite retrievals of ash.

Global warming may be behind an increase in the frequency and intensity of cold spells

The Conversation, 2024

Authors:

B. Monge-Sanz

Abstract:

A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent

Atmospheric Chemistry and Physics Copernicus Publications 23:24 (2023) 15209-15234

Authors:

Isabelle A Taylor, Roy G Grainger, Andrew T Prata, Simon R Proud, Tamsin A Mather, David M Pyle

Abstract:

Satellite instruments play a valuable role in detecting, monitoring and characterising emissions of ash and gas into the atmosphere during volcanic eruptions. This study uses two satellite instruments, the Infrared Atmospheric Sounding Interferometer (IASI) and the Advanced Baseline Imager (ABI), to examine the plumes of ash and sulfur dioxide (SO2) from the April 2021 eruption of La Soufrière, St Vincent. The frequent ABI data have been used to construct a 14 d chronology of a series of explosive events at La Soufrière, which is then complemented by measurements of SO2 from IASI, which is able to track the plume as it is transported around the globe. A minimum of 35 eruptive events were identified using true, false and brightness temperature difference maps produced with the ABI data. The high temporal resolution images were used to identify the approximate start and end times, as well as the duration and characteristics of each event. From this analysis, four distinct phases within the 14 d eruption have been defined, each consisting of multiple explosive events with similar characteristics: (1) an initial explosive event, (2) a sustained event lasting over 9 h, (3) a pulsatory phase with 25 explosive events in a 65.3 h period and (4) a waning sequence of explosive events. It is likely that the multiple explosive events during the April 2021 eruption contributed to the highly complex plume structure that can be seen in the IASI measurements of the SO2 column amounts and heights. The bulk of the SO2 from the first three phases of the eruption was transported eastwards, which based on the wind direction at the volcano implies that the SO2 was largely in the upper troposphere. Some of the SO2 was carried to the south and west of the volcano, suggesting a smaller emission of the gas into the stratosphere, there being a shift in wind direction around the height of the tropopause. The retrieved SO2 heights show that the plume had multiple layers but was largely concentrated between 13 and 19 km, with the majority of the SO2 being located in the upper troposphere and around the height of the tropopause, with some emission into the stratosphere. An average e-folding time of 6.07±4.74 d was computed based on the IASI SO2 results: similar to other tropical eruptions of this magnitude and height. The SO2 was trackable for several weeks after the eruption and is shown to have circulated the globe, with parts of it reaching as far as 45∘ S and 45∘ N. Using the IASI SO2 measurements, a time series of the total SO2 mass loading was produced, with this peaking on 13 April (descending orbits) at 0.31±0.09 Tg. Converting these mass values to a temporally varying SO2 flux demonstrated that the greatest emission occurred on 10 April with that measurement incorporating SO2 from the second phase of the eruption (sustained emission) and the beginning of the pulsatory phase. The SO2 flux is then shown to fall during the later stages of the eruption: suggesting a reduction in eruptive energy, something also reflected in ash height estimates obtained with the ABI instrument. A total SO2 emission of 0.63±0.5 Tg of SO2 has been derived, although due to limitations associated with the retrieval, particularly in the first few days after the eruption began, this, the retrieved column amounts and the total SO2 mass on each day should be considered minimum estimates. There are a number of similarities between the 1979 and 2021 eruptions at La Soufrière, with both eruptions consisting of a series of explosive events with varied heights and including some emission into the stratosphere. These similarities highlight the importance of in-depth investigations into eruptions and the valuable contribution of satellite data for this purpose; as these studies aid in learning about a volcano's behaviour, which may allow for better preparation for future eruptive activity.

Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR

EGUsphere Atmospheric Chemistry and Physics, 2023

Authors:

Fujiwara, M., Martineau, P., Wright, J. S., Abalos, M., Šácha, P., Kawatani, Y., Davis, S. M., Birner, T., and
Monge-Sanz, B. M.

Abstract:

A 30-year (1980–2010) climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations is constructed by using four global atmospheric reanalyses, MERRA-2, JRA-55, ERA-Interim, and CFSR. Both the reanalysis ensemble mean (REM) and the differences of each reanalysis from the REM are investigated in the latitude-pressure domain for December-January-February and for June-July-August. For the REM investigation, two residual vertical velocities (the original one and one evaluated from residual meridional velocity) and two mass streamfunctions (from meridional and vertical velocities) are compared, and longwave (LW) and shortwave (SW) radiative heatings are also shown and discussed. For the TEM equations, the residual terms are also calculated and investigated for their potential usefulness, as the residual term for the momentum equation should include the effects of parameterised processes such gravity waves, while that for the thermodynamic equation should indicate the analysis increment. Inter-reanalysis differences are investigated for the mass streamfunction, LW and SW heatings, the two major terms of the TEM momentum equation (the Coriolis term and the Elliassen-Palm flux divergence term), and the two major terms of the TEM thermodynamic equation (the vertical temperature advection term and the total diabatic heating term). The spread among reanalysis TEM momentum balance terms is around 10 % in Northern-Hemisphere winter and up to 50 % in Southern-Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are found in the vertical advection, which does not show a structure consistent with the differences in heatings. The results shown in this paper provide basic information on the degree of agreement among recent reanalyses in the stratosphere and in the upper troposphere in the TEM framework.

Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR

Copernicus Publications 2023 (2023) 1-49

Authors:

Masatomo Fujiwara, Patrick Martineau, Jonathon S Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M Davis, Thomas Birner, Beatriz M Monge-Sanz