Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019-20 Australian bushfires

EGUsphere European Geosciences Union (2023)

Authors:

Daniel Jamie Victor Robbins, Caroline Poulsen, Steven Siems, Simon Proud, Andrew Prata, Roy Grainger, Adam Povey

Abstract:

Extreme biomass burning (BB) events, such as those seen during the 2019–20 Australian bushfire season, are becoming more frequent and intense with climate change. Ground-based observations of these events can provide useful information on the macro- and micro-physical properties of the plumes, but these observations are sparse, especially in regions which are at risk of intense bushfire events. Satellite observations of extreme BB events provide a unique perspective, with the newest generation of geostationary imagers, such as the Advanced Himawari Imager (AHI), observing entire continents at moderate spatial and high temporal resolution. However, current passive satellite retrieval methods struggle to capture the high values of aerosol optical thickness (AOT) seen during these BB events. Accurate retrievals are necessary for global and regional studies of shortwave radiation, air quality modelling and numerical weather prediction. To address these issues, the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm has used AHI data to measure extreme BB plumes from the 2019–20 Australian bushfire season. The sensitivity of the retrieval to the assumed optical properties of BB plumes is explored by comparing retrieved AOT with AERONET L1.5 data over the AERONET site at Tumbarumba, New South Wales, between 1 December 2019 00:00 UTC to 3 January 2020 00:00 UTC. The study shows that for AOT values > 2, the sensitivity to assumed optical properties is substantial. The ORAC retrievals and AERONET data are compared against the JAXA Aerosol Retrieval Product (ARP), MODIS Deep Blue over land, MODIS MAIAC, SLSTR SYN and VIIRS Deep Blue products. The comparison shows the ORAC retrieval significantly improves coverage of optically thick plumes relative to the JAXA ARP, with approximately twice as many pixels retrieved and peak retrieved AOT values 1.4 higher than the JAXA ARP. The ORAC retrievals have accuracy scores between 0.742–0.744 compared to the values of 0.718–0.833 for the polar-orbiting satellite products, despite successfully retrieving approximately 28 times as many pixels over the study period as the most successful polar-orbiting satellite product. The AHI and MODIS satellite products are compared for three case studies covering a range of BB plumes over Australia. The results show good agreement between all products for plumes with AOT values ≤ 2. For extreme BB plumes, the ORAC retrieval finds values of AOT > 15, significantly higher than those seen in events classified as extreme by previous studies although with high uncertainty. A combination of hard limits in the retrieval algorithms and misclassification of BB plumes as cloud prevent the JAXA and MODIS products from returning AOT values significantly greater than 5.

New insights into the relationship between mass eruption rate and volcanic column height based on the IVESPA data set

Geophysical Research Letters American Geophysical Union 50:14 (2023) e2022GL102633

Authors:

Thomas J Aubry, Samantha L Engwell, Costanza Bonadonna, Larry G Mastin, Guillaume Carazzo, Alexa R Van Eaton, David E Jessop, Roy G Grainger, Simona Scollo, Isabelle A Taylor, A Mark Jellinek, Anja Schmidt, Sebastien Biass, Mathieu Gouhier

Abstract:

Rapid and simple estimation of the mass eruption rate (MER) from column height is essential for real-time volcanic hazard management and reconstruction of past explosive eruptions. Using 134 eruptive events from the new Independent Volcanic Eruption Source Parameter Archive (IVESPA, v1.0), we explore empirical MER-height relationships for four measures of column height: spreading level, sulfur dioxide height, and top height from direct observations and as reconstructed from deposits. These relationships show significant differences and highlight limitations of empirical models currently used in operational and research applications. The roles of atmospheric stratification, wind, and humidity remain challenging to detect across the wide range of eruptive conditions spanned in IVESPA, ultimately resulting in empirical relationships outperforming analytical models that account for atmospheric conditions. This finding highlights challenges in constraining the MER-height relation using heterogeneous observations and empirical models, which reinforces the need for improved eruption source parameter data sets and physics-based models.

Uncertainty in aerosol-cloud radiative forcing is driven by clean conditions

Copernicus Publications (2023)

Authors:

Edward Gryspeerdt, Adam C Povey, Roy G Grainger, Otto Hasekamp, N Christina Hsu, Jane P Mulcahy, Andrew M Sayer, Armin Sorooshian

Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions

Atmospheric Chemistry and Physics European Geosciences Union 23:7 (2023) 4115-4122

Authors:

Edward Gryspeerdt, Adam C Povey, Roy Gordon Grainger

Abstract:

Atmospheric aerosols and their impact on cloud properties remain the largest uncertainty in the human forcing of the climate system. By increasing the concentration of cloud droplets (Nd), aerosols reduce droplet size and increase the reflectivity of clouds (a negative radiative forcing). Central to this climate impact is the susceptibility of cloud droplet number to aerosol (β), the diversity of which explains much of the variation in the radiative forcing from aerosol–cloud interactions (RFaci) in global climate models. This has made measuring β a key target for developing observational constraints of the aerosol forcing.

While the aerosol burden of the clean, pre-industrial atmosphere has been demonstrated as a key uncertainty for the aerosol forcing, here we show that the behaviour of clouds under these clean conditions is of equal importance for understanding the spread in radiative forcing estimates between models and observations. This means that the uncertainty in the aerosol impact on clouds is, counterintuitively, driven by situations with little aerosol. Discarding clean conditions produces a close agreement between different model and observational estimates of the cloud response to aerosol but does not provide a strong constraint on the RFaci. This makes constraining aerosol behaviour in clean conditions an important goal for future observational studies.

Uncertainty in aerosol-cloud radiative forcing is driven by clean conditions

Atmospheric Chemistry and Physics European Geosciences Union (2023)

Authors:

Edward Gryspeerdt, Adam Povey, Roy Grainger, Otto Hasekamp, Christina Hsu, Jane Mulcahy, Andrew Sayer, Armin Sorooshian