Euclid: Early Release Observations – Overview of the Perseus cluster and analysis of its luminosity and stellar mass functions
Astronomy and Astrophysics 697 (2025)
Abstract:
The Euclid Early Release Observations (ERO) programme targeted the Perseus cluster of galaxies, gathering deep data in the central region of the cluster over 0.7 deg2, including the cluster core up to 0.25 rEuclid: Early Release Observations – Dwarf galaxies in the Perseus galaxy cluster
Astronomy and Astrophysics 697 (2025)
Abstract:
We make use of the unprecedented depth, spatial resolution, and field of view of the Euclid Early Release Observations (EROs) of the Perseus galaxy cluster to detect and characterise the dwarf galaxy population in this massive system. Using a dedicated annotation tool, the Euclid high-resolution VIS and combined VIS+Near Infrared Spectrometer and Photometer (NISP) colour images were visually inspected and dwarf galaxy candidates were identified. Their morphologies, the presence of nuclei, and their globular cluster (GC) richness were visually assessed richness were visually assessed, complementing an automatic detection of the GC candidates. Structural and photometric parameters, including Euclid filter colours, were extracted from two-dimensional fitting. Based on this analysis, a total of 1100 dwarf candidates were found across the image; 606 of these appear to be new identifications. The majority (96%) are classified as dwarf ellipticals, 53% are nucleated, 26% are GC-rich, and 6% show disturbed morphologies. A relatively high fraction of galaxies, 8%, are categorised as ultra diffuse galaxies. The majority of the dwarfs follow the expected scaling relations of galaxies. Globally, the GC specific frequency, SEuclid: Early Release Observations – The intracluster light and intracluster globular clusters of the Perseus cluster
Astronomy & Astrophysics EDP Sciences 697 (2025) a13
Euclid
Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A2
Abstract:
This paper presents the specification, design, and development of the Visible Camera (VIS) on the European Space Agency’s Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg2 sampled at 000 . 1 with an array of 609 Megapixels and a spatial resolution of 000 . 18. It will be used to survey approximately 14 000 deg2 of extragalactic sky to measure the distortion of galaxies in the redshift range z = 0.1–1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes leveraged by Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and the extent to which this has changed with look-back time can be used to constrain the nature of dark energy and theories of gravity. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, specified to reach mAB ≥ 24.5 with a signal-to-noise ratio S/N ≥ 10 in a single broad IE ≃ (r + i + z) band over a six-year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the conception of VIS and describes the instrument design and development, before reporting the prelaunch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than mAB = 25 with S/N ≥ 10 for galaxies with a full width at half maximum of 000 . 3 in a 100 . 3 diameter aperture over the Wide Survey, and mAB ≥ 26.4 for a Deep Survey that will cover more than 50 deg2. The paper also describes how the instrument works with the Euclid telescope and survey, and with the science data processing, to extract the cosmological information.Euclid
Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A5