Euclid: Early Release Observations – The intracluster light and intracluster globular clusters of the Perseus cluster

Astronomy & Astrophysics EDP Sciences 697 (2025) a13

Authors:

M Kluge, NA Hatch, M Montes, JB Golden-Marx, AH Gonzalez, J-C Cuillandre, M Bolzonella, A Lançon, R Laureijs, T Saifollahi, M Schirmer, C Stone, A Boselli, M Cantiello, JG Sorce, FR Marleau, P-A Duc, E Sola, M Urbano, SL Ahad, YM Bahé, SP Bamford, C Bellhouse, F Buitrago, P Dimauro, F Durret, A Ellien, Y Jimenez-Teja, E Slezak, N Aghanim, B Altieri, S Andreon, N Auricchio, M Baldi, A Balestra, S Bardelli, R Bender, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, GP Candini, V Capobianco, C Carbone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, G Congedo, CJ Conselice, L Conversi, Y Copin, F Courbin, HM Courtois, M Cropper, A Da Silva, H Degaudenzi, J Dinis, CAJ Duncan, X Dupac, S Dusini, M Farina, S Farrens, S Ferriol, P Fosalba, M Frailis, E Franceschi, M Fumana, S Galeotta, B Garilli, W Gillard, B Gillis, C Giocoli, P Gómez-Alvarez, BR Granett, A Grazian, F Grupp, L Guzzo, SVH Haugan, J Hoar, H Hoekstra, W Holmes, I Hook, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, E Keihänen, S Kermiche, A Kiessling, T Kitching, R Kohley, B Kubik, M Kümmel, M Kunz, H Kurki-Suonio, O Lahav, S Ligori, PB Lilje, V Lindholm, I Lloro, E Maiorano, O Mansutti, O Marggraf, K Markovic, N Martinet, F Marulli, R Massey, S Maurogordato, HJ McCracken, E Medinaceli, S Mei, M Melchior, Y Mellier, M Meneghetti, E Merlin, G Meylan, M Moresco, L Moscardini, E Munari, RC Nichol, S-M Niemi, JW Nightingale, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, GD Racca, F Raison, R Rebolo, A Renzi, J Rhodes, G Riccio, H-W Rix, E Romelli, M Roncarelli, E Rossetti, R Saglia, D Sapone, B Sartoris, M Sauvage, R Scaramella, P Schneider, T Schrabback, A Secroun, G Seidel, M Seiffert, S Serrano, C Sirignano, G Sirri, J Skottfelt, L Stanco, P Tallada-Crespí, AN Taylor, HI Teplitz, I Tereno, R Toledo-Moreo, F Torradeflot, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, G Verdoes Kleijn, A Veropalumbo, Y Wang, J Weller, OR Williams, G Zamorani, E Zucca, A Biviano, C Burigana, G De Lucia, K George, V Scottez, P Simon, A Mora, J Martín-Fleitas, F Ruppin, D Scott

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A2

Authors:

Ms Cropper, A Al-Bahlawan, J Amiaux, S Awan, R Azzollini, K Benson, M Berthe, J Boucher, E Bozzo, C Brockley-Blatt, Gp Candini, C Cara, Ra Chaudery, Re Cole, P Danto, J Denniston, Am Di Giorgio, B Dryer, J-P Dubois, J Endicott, M Farina, E Galli, L Genolet, Jpd Gow, P Guttridge, M Hailey, D Hall, C Harper, H Hoekstra, Ad Holland, B Horeau, D Hu, Re James, A Khalil, R King, T Kitching, R Kohley, C Larcheveque, A Lawrenson, P Liebing, Sj Liu, J Martignac, R Massey, Hj McCracken, L Miller, N Murray, R Nakajima, S-M Niemi, Jw Nightingale, S Paltani

Abstract:

This paper presents the specification, design, and development of the Visible Camera (VIS) on the European Space Agency’s Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg2 sampled at 000 . 1 with an array of 609 Megapixels and a spatial resolution of 000 . 18. It will be used to survey approximately 14 000 deg2 of extragalactic sky to measure the distortion of galaxies in the redshift range z = 0.1–1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes leveraged by Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and the extent to which this has changed with look-back time can be used to constrain the nature of dark energy and theories of gravity. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, specified to reach mAB ≥ 24.5 with a signal-to-noise ratio S/N ≥ 10 in a single broad IE ≃ (r + i + z) band over a six-year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the conception of VIS and describes the instrument design and development, before reporting the prelaunch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than mAB = 25 with S/N ≥ 10 for galaxies with a full width at half maximum of 000 . 3 in a 100 . 3 diameter aperture over the Wide Survey, and mAB ≥ 26.4 for a Deep Survey that will cover more than 50 deg2. The paper also describes how the instrument works with the Euclid telescope and survey, and with the science data processing, to extract the cosmological information.

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A5

Authors:

Fj Castander, P Fosalba, J Stadel, D Potter, J Carretero, P Tallada-Crespí, L Pozzetti, M Bolzonella, Ga Mamon, L Blot, K Hoffmann, M Huertas-Company, P Monaco, Ej Gonzalez, G De Lucia, C Scarlata, M-A Breton, L Linke, C Viglione, S-S Li, Z Zhai, Z Baghkhani, K Pardede, C Neissner, R Teyssier, M Crocce, I Tutusaus, L Miller, G Congedo, A Biviano, M Hirschmann, A Pezzotta, H Aussel, H Hoekstra, T Kitching, Wj Percival, L Guzzo, Y Mellier, Pa Oesch, Raa Bowler, S Bruton, V Allevato, V Gonzalez-Perez, M Manera, S Avila, A Kovács, N Aghanim, B Altieri, A Amara, L Amendola

Abstract:

We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure formation over more than 10 billion years primarily from the combination of weak gravitational lensing and galaxy clustering data. The breadth of Euclid’s data will also foster a wide variety of scientific analyses. The Flagship simulation was developed to provide a realistic approximation to the galaxies that will be observed by Euclid and used in its scientific exploitation. We ran a state-of-the-art N-body simulation with four trillion particles, producing a lightcone on the fly. From the dark matter particles, we produced a catalogue of 16 billion haloes in one octant of the sky in the lightcone up to redshift z = 3. We then populated these haloes with mock galaxies using a halo occupation distribution and abundance-matching approach, calibrating the free parameters of the galaxy mock against observed correlations and other basic galaxy properties. Modelled galaxy properties include luminosity and flux in several bands, redshifts, positions and velocities, spectral energy distributions, shapes and sizes, stellar masses, star formation rates, metallicities, emission line fluxes, and lensing properties. We selected a final sample of 3.4 billion galaxies with a magnitude cut of HE < 26, where we are complete. We have performed a comprehensive set of validation tests to check the similarity to observational data and theoretical models. In particular, our catalogue is able to closely reproduce the main characteristics of the weak lensing and galaxy clustering samples to be used in the mission main cosmological analysis. Moreover, given its depth and completeness, this new galaxy mock also provides the community with a powerful tool for developing a wide range of scientific analyses beyond the Euclid mission.

On the relationship between the cosmic web and the alignment of galaxies and AGN jets

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2362-2379

Authors:

S Lyla Jung, IH Whittam, MJ Jarvis, CL Hale, MN Tudorache, T Yasin

Abstract:

The impact of active galactic nuclei (AGNs) on the evolution of galaxies explains the steep decrease in the number density of the most massive galaxies in the Universe. However, the fuelling of the AGN and the efficiency of this feedback largely depend on their environment. We use data from the Low Frequency Array Two-metre Sky Survey Data Release 2 (DR2), the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys, and the Sloan Digital Sky Survey DR12 to make the first study of the orientations of radio jets and their optical counterpart in relation to the cosmic web environment. We find that close to filaments (), galaxies tend to have their optical major axes aligned with the nearest filaments. On the other hand, radio jets, which are generally aligned perpendicularly to the optical major axis of the host galaxy, show more randomized orientations with respect to host galaxies within of filaments. These results support the scenario that massive galaxies in cosmic filaments grow by numerous mergers directed along the orientation of the filaments while experiencing chaotic accretion of gas on to the central black hole. The AGN-driven jets consequently have a strong impact preferentially along the minor axes of dark matter haloes within filaments. We discuss the implications of these results for large-scale radio jet alignments, intrinsic alignments between galaxies, and the azimuthal anisotropy of the distribution of circumgalactic medium and anisotropic quenching.

Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) ARTN A280

Authors:

L Ingoglia, M Sereno, S Farrens, C Giocoli, L Baumont, Gf Lesci, L Moscardini, C Murray, M Vannier, A Biviano, C Carbone, G Covone, G Despali, M Maturi, S Maurogordato, M Meneghetti, M Radovich, B Altieri, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, F Bellagamba, R Bender, F Bernardeau, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, J Carretero, S Casas, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, M Cropper, A Da Silva, H Degaudenzi, G De Lucia

Abstract:

The ability to measure unbiased weak-lensing (WL) masses is a key ingredient to exploit galaxy clusters as a competitive cosmological probe with the ESA Euclid survey or future missions. We investigate the level of accuracy and precision of cluster masses measured with the Euclid data processing pipeline. We use the DEMNUni-Cov N-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider different halo mass density models, priors, and mass point estimates, that is the biweight, mean, and median of the marginalised posterior distribution and the maximum likelihood parameter. WL mass differs from true mass due to, for example, the intrinsic ellipticity of sources, correlated or uncorrelated matter and large-scale structure, halo triaxiality and orientation, and merging or irregular morphology. In an ideal scenario without observational or measurement errors, the maximum likelihood estimator is the most accurate, with WL masses biased low by {bM} =a-14.6-±-1.7% on average over the full range M200c > 5×1013 M⊙ and z < 1. Due to the stabilising effect of the prior, the biweight, mean, and median estimates are more precise, that is with smaller intrinsic scatter. The scatter decreases with increasing mass and informative priors can significantly reduce the scatter. Halo mass density profiles with a truncation provide better fits to the lensing signal, while the accuracy and precision are not significantly affected. We further investigate the impact of various additional sources of systematic uncertainty on the WL mass estimates, namely the impact of photometric redshift uncertainties and source selection, the expected performance of Euclid cluster detection algorithms, and the presence of masks. Taken in isolation, we find that the largest effect is induced by non-conservative source selection with {bM} =a-33.4-±-1.6%. This effect can be mostly removed with a robust selection. As a final Euclid-like test, we combine systematic effects in a realistic observational setting and find {bM} =a-15.5-±-2.4% under a robust selection. This is very similar to the ideal case, though with a slightly larger scatter mostly due to cluster redshift uncertainty and miscentering.