Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 520:3 (2023) 3529-3548

Authors:

Euclid Collaboration, L Bisigello, CJ Conselice, M Baes, M Bolzonella, M Brescia, S Cavuoti, O Cucciati, A Humphrey, LK Hunt, C Maraston, L Pozzetti, C Tortora, SE van Mierlo, N Aghanim, N Auricchio, M Baldi, R Bender, C Bodendorf, D Bonino, E Branchini, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, FJ Castander, M Castellano, A Cimatti, G Congedo, L Conversi, Y Copin, L Corcione, F Courbin, M Cropper, A Da Silva, H Degaudenzi, M Douspis, F Dubath, CAJ Duncan, X Dupac, S Dusini, S Farrens, S Ferriol, M Frailis, E Franceschi, P Franzetti, M Fumana, B Garilli, W Gillard, B Gillis, C Giocoli, A Grazian, F Grupp, L Guzzo, SVH Haugan, W Holmes, F Hormuth, A Hornstrup, K Jahnke, M Kümmel, S Kermiche, A Kiessling, M Kilbinger, R Kohley, M Kunz, H Kurki-Suonio, S Ligori, PB Lilje, I Lloro, E Maiorano, O Mansutti, O Marggraf, K Markovic, F Marulli, R Massey, S Maurogordato, E Medinaceli, M Meneghetti, E Merlin, G Meylan, M Moresco, L Moscardini, E Munari, SM Niemi, C Padilla, S Paltani, F Pasian, K Pedersen, V Pettorino, G Polenta, M Poncet, L Popa, F Raison, A Renzi, J Rhodes, G Riccio, H-W Rix, E Romelli, M Roncarelli, C Rosset, E Rossetti, R Saglia, D Sapone, B Sartoris, P Schneider, M Scodeggio, A Secroun, G Seidel, C Sirignano, G Sirri, L Stanco, P Tallada-Crespí, D Tavagnacco, AN Taylor, I Tereno, R Toledo-Moreo, F Torradeflot, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, Y Wang, A Zacchei, G Zamorani, J Zoubian, S Andreon, S Bardelli, A Boucaud, C Colodro-Conde, D Di Ferdinando, J Graciá-Carpio, V Lindholm, D Maino, S Mei, V Scottez, F Sureau, M Tenti, E Zucca, AS Borlaff, M Ballardini, A Biviano, E Bozzo, C Burigana, R Cabanac, A Cappi, CS Carvalho, S Casas, G Castignani, A Cooray, J Coupon, HM Courtois, J Cuby, S Davini, G De Lucia, G Desprez, H Dole, JA Escartin, S Escoffier, M Farina, S Fotopoulou, K Ganga, J Garcia-Bellido, K George, F Giacomini, G Gozaliasl, H Hildebrandt, I Hook, M Huertas-Company, V Kansal, E Keihanen, CC Kirkpatrick, A Loureiro, JF Macías-Pérez, M Magliocchetti, G Mainetti, S Marcin, M Martinelli, N Martinet, RB Metcalf, P Monaco, G Morgante, S Nadathur, AA Nucita, L Patrizii, A Peel, D Potter, A Pourtsidou, M Pöntinen, P Reimberg, AG Sánchez, Z Sakr, M Schirmer, E Sefusatti, M Sereno, J Stadel, R Teyssier, C Valieri, J Valiviita, M Viel

Euclid: Forecasts from the void-lensing cross-correlation⋆

Astronomy & Astrophysics EDP Sciences 670 (2023) a47

Authors:

M Bonici, C Carbone, S Davini, P Vielzeuf, L Paganin, V Cardone, N Hamaus, A Pisani, AJ Hawken, A Kovacs, S Nadathur, S Contarini, G Verza, I Tutusaus, F Marulli, L Moscardini, M Aubert, C Giocoli, A Pourtsidou, S Camera, S Escoffier, A Caminata, S Di Domizio, M Martinelli, M Pallavicini, V Pettorino, Z Sakr, D Sapone, G Testera, S Tosi, V Yankelevich, A Amara, N Auricchio, M Baldi, D Bonino, E Branchini, M Brescia, J Brinchmann, V Capobianco, J Carretero, M Castellano, S Cavuoti, R Cledassou, G Congedo, L Conversi, Y Copin, L Corcione, F Courbin, M Cropper, A Da Silva, H Degaudenzi, M Douspis, F Dubath, CAJ Duncan, X Dupac, S Dusini, A Ealet, S Farrens, S Ferriol, P Fosalba, M Frailis, E Franceschi, M Fumana, P Gómez-Alvarez, B Garilli, B Gillis, A Grazian, F Grupp, L Guzzo, SVH Haugan, W Holmes, F Hormuth, A Hornstrup, K Jahnke, M Kümmel, S Kermiche, A Kiessling, M Kilbinger, M Kunz, H Kurki-Suonio, R Laureijs, S Ligori, PB Lilje, I Lloro, E Maiorano, O Mansutti, O Marggraf, K Markovic, R Massey, E Medinaceli, M Melchior, M Meneghetti, G Meylan, M Moresco, E Munari, SM Niemi, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, S Pires, G Polenta, M Poncet, L Popa, F Raison, R Rebolo, A Renzi, J Rhodes, E Rossetti, R Saglia, B Sartoris, M Scodeggio, A Secroun, G Seidel, C Sirignano, G Sirri, L Stanco, J-L Starck, C Surace, P Tallada-Crespí, D Tavagnacco, AN Taylor, I Tereno, R Toledo-Moreo, F Torradeflot, EA Valentijn, L Valenziano, Y Wang, J Weller, G Zamorani, J Zoubian, S Andreon

KiDS-Legacy calibration: Unifying shear and redshift calibration with the SKiLLS multi-band image simulations

Astronomy & Astrophysics EDP Sciences 670 (2023) a100

Authors:

Shun-Sheng Li, Konrad Kuijken, Henk Hoekstra, Lance Miller, Catherine Heymans, Hendrik Hildebrandt, Jan Luca van den Busch, Angus H Wright, Mijin Yoon, Maciej Bilicki, Matías Bravo, Claudia del P. Lagos

MIGHTEE: deep 1.4 GHz source counts and the sky temperature contribution of star forming galaxies and active galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:2 (2022) 2668-2691

Authors:

Cl Hale, Ih Whittam, Mj Jarvis, Pn Best, Nl Thomas, I Heywood, M Prescott, N Adams, J Afonso, Fangxia An, Raa Bowler, Jd Collier, Rhw Cook, R Davé, Bs Frank, M Glowacki, Pw Hatfield, S Kolwa, Cc Lovell, N Maddox, L Marchetti, Lk Morabito, E Murphy, I Prandoni, Z Randriamanakoto

Abstract:

We present deep 1.4 GHz source counts from ∼5 deg2 of the continuum Early Science data release of the MeerKAT International Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to S1.4GHz ∼15 μJy. Using observations over two extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness of the raw source counts within the survey to understand the true underlying source count population. We use a variety of simulations that account for: errors in source detection and characterisation, clustering, and variations in the assumed source model used to simulate sources within the field and characterise source count incompleteness. We present these deep source count distributions and use them to investigate the contribution of extragalactic sources to the sky background temperature at 1.4 GHz using a relatively large sky area. We then use the wealth of ancillary data covering a subset of the COSMOS field to investigate the specific contributions from both active galactic nuclei (AGN) and star forming galaxies (SFGs) to the source counts and sky background temperature. We find, similar to previous deep studies, that we are unable to reconcile the sky temperature observed by the ARCADE 2 experiment. We show that AGN provide the majority contribution to the sky temperature contribution from radio sources, but the relative contribution of SFGs rises sharply below 1 mJy, reaching an approximate 15-25 per cent contribution to the total sky background temperature (Tb ∼100 mK) at ∼15 μJy.

Propagating spatially varying multiplicative shear bias to cosmological parameter estimation for stage-IV weak-lensing surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press 518:4 (2022) 4909-4920

Authors:

Casey Cragg, Christopher AJ Duncan, Lance Miller, David Alonso

Abstract:

We consider the bias introduced by a spatially varying multiplicative shear bias (m-bias) on tomographic cosmic shear angular power spectra. To compute the bias in the power spectra, we estimate the mode-coupling matrix associated with an m-bias map using a computationally efficient pseudo-C method. This allows us to consider the effect of the m-bias to high ℓ. We then conduct a Fisher matrix analysis to forecast resulting biases in cosmological parameters. For a Euclid-like survey with a spatially varying m-bias, with zero mean and rms of 0.01, we find that parameter biases reach a maximum of ∼10 per cent of the expected statistical error, if multipoles up to ℓmax = 5000 are included. We conclude that the effect of the spatially varying m-bias may be a subdominant but potentially non-negligible contribution to the error budget in forthcoming weak lensing surveys. We also investigate the dependence of parameter biases on the amplitude and angular scale of spatial variations of the m-bias field, and conclude that requirements should be placed on the rms of spatial variations of the m-bias, in addition to any requirement on the mean value. We find that, for a Euclid-like survey, biases generally exceed ∼30 per cent of the statistical error for m-bias rms ∼0.02–0.03 and can exceed the statistical error for rms ∼0.04–0.05. This allows requirements to be set on the permissible amplitude of spatial variations of the m-bias that will arise due to systematics in forthcoming weak lensing measurements.