The infrared-radio correlation of star-forming galaxies is strongly M-star-dependent but nearly redshift-invariant since z similar to 4

Astronomy and Astrophysics European Southern Observatory 647 (2021) A123

Authors:

I Delvecchio, E Daddi, Mt Sargent, Matt Jarvis, D Elbaz, S Jin, D Liu, Imogen Whittam, H Algera, R Carraro, C D'Eugenio, J Delhaize, Bs Kalita, S Leslie, D Cs Molnar, M Novak, I Prandoni, V Smolcic, Y Ao, M Aravena, F Bournaud, Jd Collier, Sm Randriamampandry, Z Randriamanakoto, G Rodighiero, J Schober, Sv White, G Zamorani

Abstract:

Over the past decade, several works have used the ratio between total (rest 8−1000 μm) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (qIR), often referred to as the infrared-radio correlation (IRRC), to calibrate the radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of qIR with redshift, finding a mild but significant decline that is yet to be understood. Here, for the first time, we calibrate qIR as a function of both stellar mass (M⋆) and redshift, starting from an M⋆-selected sample of > 400 000 star-forming galaxies in the COSMOS field, identified via (NUV − r)/(r − J) colours, at redshifts of 0.1 < z < 4.5. Within each (M⋆,z) bin, we stacked the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates. We then carefully removed the radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M⋆, with more massive galaxies displaying a systematically lower qIR. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: qIR(M⋆, z) = (2.646 ± 0.024) × (1 + z)( − 0.023 ± 0.008)–(0.148 ± 0.013) × (log M⋆/M⊙ − 10). Adding the UV dust-uncorrected contribution to the IR as a proxy for the total SFR would further steepen the qIR dependence on M⋆. We interpret the apparent redshift decline reported in previous works as due to low-M⋆ galaxies being progressively under-represented at high redshift, as a consequence of binning only in redshift and using either infrared or radio-detected samples. The lower IR/radio ratios seen in more massive galaxies are well described by their higher observed SFR surface densities. Our findings highlight the fact that using radio-synchrotron emission as a proxy for SFR requires novel M⋆-dependent recipes that will enable us to convert detections from future ultra-deep radio surveys into accurate SFR measurements down to low-M⋆ galaxies with low SFR.

MIGHTEE: are giant radio galaxies more common than we thought?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 501:3 (2021) 3833-3845

Authors:

J Delhaize, I Heywood, M Prescott, Mj Jarvis, I Delvecchio, Ih Whittam, Sv White, Mj Hardcastle, Cl Hale, J Afonso, Y Ao, M Brienza, M Brueggen, Jd Collier, E Daddi, M Glowacki, N Maddox, Lk Morabito, I Prandoni, Z Randriamanakoto, S Sekhar, Fangxia An, Nj Adams, S Blyth, Raa Bowler, L Leeuw, L Marchetti, Sm Randriamampandry, K Thorat, N Seymour, O Smirnov, Ar Taylor, C Tasse, M Vaccari

CODEX weak lensing mass catalogue and implications on the mass–richness relation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 502:1 (2021) 1494-1526

Authors:

K Kiiveri, D Gruen, A Finoguenov, T Erben, L van Waerbeke, E Rykoff, L Miller, S Hagstotz, R Dupke, J Patrick Henry, J-P Kneib, G Gozaliasl, CC Kirkpatrick, N Cibirka, N Clerc, M Costanzi, ES Cypriano, E Rozo, H Shan, P Spinelli, J Valiviita, J Weller

KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints

Astronomy & Astrophysics EDP Sciences 646 (2021) a140

Authors:

Catherine Heymans, Tilman Tröster, Marika Asgari, Chris Blake, Hendrik Hildebrandt, Benjamin Joachimi, Konrad Kuijken, Chieh-An Lin, Ariel G Sánchez, Jan Luca van den Busch, Angus H Wright, Alexandra Amon, Maciej Bilicki, Jelte de Jong, Martin Crocce, Andrej Dvornik, Thomas Erben, Maria Cristina Fortuna, Fedor Getman, Benjamin Giblin, Karl Glazebrook, Henk Hoekstra, Shahab Joudaki, Arun Kannawadi, Fabian Köhlinger, Chris Lidman, Lance Miller, Nicola R Napolitano, David Parkinson, Peter Schneider, HuanYuan Shan, Edwin A Valentijn, Gijs Verdoes Kleijn, Christian Wolf

Tightening weak lensing constraints on the ellipticity of galaxy-scale dark matter haloes

Astronomy & Astrophysics EDP Sciences 646 (2021) a73

Authors:

Tim Schrabback, Henk Hoekstra, Ludovic Van Waerbeke, Edo van Uitert, Christos Georgiou, Marika Asgari, Patrick Côté, Jean-Charles Cuillandre, Thomas Erben, Laura Ferrarese, Stephen DJ Gwyn, Catherine Heymans, Hendrik Hildebrandt, Arun Kannawadi, Konrad Kuijken, Alexie Leauthaud, Martin Makler, Simona Mei, Lance Miller, Anand Raichoor, Peter Schneider, Angus Wright