Towards simulating a realistic data analysis with an optimised angular power spectrum of spectroscopic galaxy surveys

Experimental Results , Volume 1 , 2020 , e54

Authors:

Guglielmo Faggioli, Konstantinos Tanidis, Stefano Camera

Abstract:

The angular power spectrum is a natural tool to analyse the observed galaxy number count fluctuations. In a standard analysis, the angular galaxy distribution is sliced into concentric redshift bins and all correlations of its harmonic coefficients between bin pairs are considered—a procedure referred to as ‘tomography’. However, the unparalleled quality of data from oncoming spectroscopic galaxy surveys for cosmology will render this method computationally unfeasible, given the increasing number of bins. Here, we put to test against synthetic data a novel method proposed in a previous study to save computational time. According to this method, the whole galaxy redshift distribution is subdivided into thick bins, neglecting the cross-bin correlations among them; each of the thick bin is, however, further subdivided into thinner bins, considering in this case all the cross-bin correlations. We create a simulated data set that we then analyse in a Bayesian framework. We confirm that the newly proposed method saves computational time and gives results that surpass those of the standard approach.

Euclid preparation: X. The Euclid photometric-redshift challenge

Astronomy and Astrophysics EDP Sciences 644:December 2020 (2020) A31

Authors:

G Desprez, S Paltani, J Coupon, I Almosallam, A Alvarez-Ayllon, V Amaro, M Brescia, M Brodwin, S Cavuoti, J De Vicente-Albendea, S Fotopoulou, Pw Hatfield, Peter Hatfield, O Ilbert, Mj Jarvis, G Longo, Mm Rau, R Saha, Js Speagle, A Tramacere, M Castellano, F Dubath, A Galametz, M Kuemmel, C Laigle, E Merlin, Jj Mohr, S Pilo, M Salvato, S Andreon, N Auricchio, C Baccigalupi, A Balaguera-Antolinez, M Baldi, S Bardelli, R Bender, A Biviano, C Bodendorf, D Bonino, E Bozzo, E Branchini, J Brinchmann, C Burigana, R Cabanac, S Camera, V Capobianco, A Cappi, C Carbone, J Carretero

Abstract:

Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2pdbl-pdbl2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1pdbl+pdblz) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example zpdbl> pdbl1. However they generally perform better than template-fitting methods at low redshift (zpdbl< pdbl0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.

Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- III. Implementing the multi-tracer technique to constrain neutrino masses

Monthly Notices of the Royal Astronomical Society, Volume 502, Issue 2, April 2021, Pages 2952–2960

Authors:

Konstantinos Tanidis, Stefano Camera

Abstract:

In this paper, we apply the multitracer technique to harmonic-space (i.e. angular) power spectra with a likelihood-based approach. This goes beyond the usual Fisher matrix formalism hitherto implemented in forecasts with angular statistics, opening up a window for future developments and direct application to available data sets. We also release a fully operational modified version of the publicly available code CosmoSIS, where we consistently include all the add-ons presented in the previous papers of this series. The result is a modular cosmological parameter estimation suite for angular power spectra of galaxy number counts, allowing for single and multiple tracers, and including density fluctuations, redshift-space distortions, and weak-lensing magnification. We demonstrate the improvement on parameter constraints enabled by the use of multiple tracers on a multitracing analysis of luminous red galaxies and emission-line galaxies. We obtain an enhancement of 44 per cent on the 2σ upper bound on the sum of neutrino masses.

Euclid preparation VIII. The Complete Calibration of the Colour-Redshift Relation survey: VLT/KMOS observations and data release

Astronomy and Astrophysics EDP Sciences 642 (2020) A192

Authors:

V Guglielmo, Pedro Ferreira

Abstract:

The Complete Calibration of the Colour–Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour–redshift relation – P(z|C) to the Euclid depth (iAB = 24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3 ≤ z ≤ 2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOM grid cells. We measured Hα fluxes in a 1.″2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B − V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z <  1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z >  2 galaxies.

The infrared-radio correlation of star-forming galaxies is strongly M$_{\star}$-dependent but nearly redshift-invariant since z$\sim$4

ArXiv 2010.0551 (2020)

Authors:

I Delvecchio, E Daddi, MT Sargent, MJ Jarvis, D Elbaz, S Jin, D Liu, IH Whittam, H Algera, R Carraro, C D'Eugenio, J Delhaize, BS Kalita, S Leslie, D Cs Molnar, M Novak, I Prandoni, V Smolcic, Y Ao, M Aravena, F Bournaud, JD Collier, SM Randriamampandry, Z Randriamanakoto, G Rodighiero, J Schober, SV White, G Zamorani