X-ray variability analysis of a large series of XMM–Newton +NuSTAR observations of NGC 3227
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 494:4 (2020) 5056-5074
X-ray variability analysis of a large series of XMM-Newton + NuSTAR observations of NGC 3227
ArXiv 2004.03824 (2020)
Euclid preparation: VI. Verifying the performance of cosmic shear experiments
Astronomy and Astrophysics EDP Sciences 635:March 2020 (2020) A139
Abstract:
Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.The faint radio source population at 15.7 GHz – IV. The dominance of core emission in faint radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2841-2853
Abstract:
We present 15-GHz Karl G. Jansky Very Large Array observations of a complete sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C) survey. 67 out of the 95 sources (71 per cent) are unresolved in the new observations and lower frequency radio observations, placing an upper limit on their angular size of ∼2 arcsec. Thus, compact radio galaxies, or radio galaxies with very faint jets, are the dominant population in the 10C survey. This provides support for the suggestion in our previous work that low-luminosity (L<1025W~Hz−1) radio galaxies are core dominated, although higher resolution observations are required to confirm this directly. The 10C sample of compact, high-frequency selected radio galaxies is a mixture of high-excitation and low-excitation radio galaxies and displays a range of radio spectral shapes, demonstrating that they are a mixed population of objects.
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- II. A case study for magnification bias and radio continuum surveys
Monthly Notices of the Royal Astronomical Society, Volume 491, Issue 4, February 2020, Pages 4869–4883
Abstract:
Following on our purpose of developing a unified pipeline for large-scale structure data analysis with angular power spectra, we now include the weak lensing effect of magnification bias on galaxy clustering in a publicly available, modular parameter estimation code. We thus forecast constraints on the parameters of the concordance cosmological model, dark energy, and modified gravity theories from galaxy clustering tomographic angular power spectra. We find that a correct modelling of magnification is crucial not to bias the parameter estimation, especially in the case of deep galaxy surveys. Our case study adopts specifications of the Evolutionary Map of the Universe, which is a full-sky, deep radio-continuum survey, expected to probe the Universe up to redshift z ∼ 6. We assume the Limber approximation, and include magnification bias on top of density fluctuations and redshift-space distortions. By restricting our analysis to the regime where the Limber approximation holds true, we significantly minimize the computational time needed, compared to that of the exact calculation. We also show that there is a trend for more biased parameter estimates from neglecting magnification when the redshift bins are very wide. We conclude that this result implies a strong dependence on the lensing contribution, which is an integrated effect and becomes dominant when wide redshift bins are considered. Finally, we note that instead of being considered a contaminant, magnification bias encodes important cosmological information, and its inclusion leads to an alleviation of its degeneracy between the galaxy bias and the amplitude normalization of the matter fluctuations.