The faint radio source population at 15.7 GHz – IV. The dominance of core emission in faint radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2841-2853
Abstract:
We present 15-GHz Karl G. Jansky Very Large Array observations of a complete sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C) survey. 67 out of the 95 sources (71 per cent) are unresolved in the new observations and lower frequency radio observations, placing an upper limit on their angular size of ∼2 arcsec. Thus, compact radio galaxies, or radio galaxies with very faint jets, are the dominant population in the 10C survey. This provides support for the suggestion in our previous work that low-luminosity (L<1025W~Hz−1) radio galaxies are core dominated, although higher resolution observations are required to confirm this directly. The 10C sample of compact, high-frequency selected radio galaxies is a mixture of high-excitation and low-excitation radio galaxies and displays a range of radio spectral shapes, demonstrating that they are a mixed population of objects.
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- II. A case study for magnification bias and radio continuum surveys
Monthly Notices of the Royal Astronomical Society, Volume 491, Issue 4, February 2020, Pages 4869–4883
Abstract:
Following on our purpose of developing a unified pipeline for large-scale structure data analysis with angular power spectra, we now include the weak lensing effect of magnification bias on galaxy clustering in a publicly available, modular parameter estimation code. We thus forecast constraints on the parameters of the concordance cosmological model, dark energy, and modified gravity theories from galaxy clustering tomographic angular power spectra. We find that a correct modelling of magnification is crucial not to bias the parameter estimation, especially in the case of deep galaxy surveys. Our case study adopts specifications of the Evolutionary Map of the Universe, which is a full-sky, deep radio-continuum survey, expected to probe the Universe up to redshift z ∼ 6. We assume the Limber approximation, and include magnification bias on top of density fluctuations and redshift-space distortions. By restricting our analysis to the regime where the Limber approximation holds true, we significantly minimize the computational time needed, compared to that of the exact calculation. We also show that there is a trend for more biased parameter estimates from neglecting magnification when the redshift bins are very wide. We conclude that this result implies a strong dependence on the lensing contribution, which is an integrated effect and becomes dominant when wide redshift bins are considered. Finally, we note that instead of being considered a contaminant, magnification bias encodes important cosmological information, and its inclusion leads to an alleviation of its degeneracy between the galaxy bias and the amplitude normalization of the matter fluctuations.
Disentangling magnification in combined shear-clustering analyses
Monthly Notices of the Royal Astronomical Society Oxford University Press 491:2 (2019) 1756-1758
Euclid preparation
Astronomy & Astrophysics EDP Sciences 631 (2019) a85
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- I. The importance of redshift-space distortions for galaxy number counts
Monthly Notices of the Royal Astronomical Society, Volume 489, Issue 3, November 2019, Pages 3385–3402
Abstract:
We develop a cosmological parameter estimation code for (tomographic) angular power spectra analyses of galaxy number counts, for which we include, for the first time, redshift-space distortions (RSDs) in the Limber approximation. This allows for a speed-up in computation time, and we emphasize that only angular scales where the Limber approximation is valid are included in our analysis. Our main result shows that a correct modelling of RSD is crucial not to bias cosmological parameter estimation. This happens not only for spectroscopy-detected galaxies, but even in the case of galaxy surveys with photometric redshift estimates. Moreover, a correct implementation of RSD is especially valuable in alleviating the degeneracy between the amplitude of the underlying matter power spectrum and the galaxy bias. We argue that our findings are particularly relevant for present and planned observational campaigns, such as the Euclid satellite or the Square Kilometre Array, which aim at studying the cosmic large-scale structure and trace its growth over a wide range of redshifts and scales.