Disentangling magnification in combined shear-clustering analyses
Monthly Notices of the Royal Astronomical Society Oxford University Press 491:2 (2019) 1756-1758
Euclid preparation
Astronomy & Astrophysics EDP Sciences 631 (2019) a85
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- I. The importance of redshift-space distortions for galaxy number counts
Monthly Notices of the Royal Astronomical Society, Volume 489, Issue 3, November 2019, Pages 3385–3402
Abstract:
We develop a cosmological parameter estimation code for (tomographic) angular power spectra analyses of galaxy number counts, for which we include, for the first time, redshift-space distortions (RSDs) in the Limber approximation. This allows for a speed-up in computation time, and we emphasize that only angular scales where the Limber approximation is valid are included in our analysis. Our main result shows that a correct modelling of RSD is crucial not to bias cosmological parameter estimation. This happens not only for spectroscopy-detected galaxies, but even in the case of galaxy surveys with photometric redshift estimates. Moreover, a correct implementation of RSD is especially valuable in alleviating the degeneracy between the amplitude of the underlying matter power spectrum and the galaxy bias. We argue that our findings are particularly relevant for present and planned observational campaigns, such as the Euclid satellite or the Square Kilometre Array, which aim at studying the cosmic large-scale structure and trace its growth over a wide range of redshifts and scales.
Consistent cosmic shear in the face of systematics: a B-mode analysis of KiDS-450, DES-SV and CFHTLenS
Astronomy and Astrophysics: a European journal EDP Sciences (2019)
Abstract:
We analyse three public cosmic shear surveys; the Kilo-Degree Survey (KiDS-450), the Dark Energy Survey (DES-SV) and the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). Adopting the COSEBIs statistic to cleanly and completely separate the lensing E-modes from the non-lensing B-modes, we detect B-modes in KiDS-450 and CFHTLenS at the level of about 2.7 $\sigma$. For DES- SV we detect B-modes at the level of 2.8 $\sigma$ in a non-tomographic analysis, increasing to a 5.5 $\sigma$ B-mode detection in a tomographic analysis. In order to understand the origin of these detected B-modes we measure the B-mode signature of a range of different simulated systematics including PSF leakage, random but correlated PSF modelling errors, camera-based additive shear bias and photometric redshift selection bias. We show that any correlation between photometric-noise and the relative orientation of the galaxy to the point-spread-function leads to an ellipticity selection bias in tomographic analyses. This work therefore introduces a new systematic for future lensing surveys to consider. We find that the B-modes in DES-SV appear similar to a superposition of the B-mode signatures from all of the systematics simulated. The KiDS-450 and CFHTLenS B-mode measurements show features that are consistent with a repeating additive shear bias.Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey
Astronomy and Astrophysics EDP Sciences 624 (2019) A92