Non-stellar radiation in radio galaxies at 3.5 µm
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 214:2 (1985) 109-118
An X-ray survey of a complete sample of 3CR radio galaxies
The Astrophysical Journal American Astronomical Society 277 (1984) 115
Cosmological Simulations for Combined-Probe Analyses: Covariance and Neighbour-Exclusion Bias
Abstract:
We present a public suite of weak lensing mock data, extending the Scinet Light Cone Simulations (SLICS) to simulate cross-correlation analyses with different cosmological probes. These mocks include KiDS-450- and LSST-like lensing data, cosmic microwave background lensing maps and simulated spectroscopic surveys that emulate the GAMA, BOSS and 2dFLenS galaxy surveys. With 817 independent realisations, our mocks are optimised for combined-probe covariance estimation, which we illustrate for the case of a joint measurement involving cosmic shear, galaxy-galaxy lensing and galaxy clustering from KiDS-450 and BOSS data. With their high spatial resolution, the SLICS are also optimal for predicting the signal for novel lensing estimators, for the validation of analysis pipelines, and for testing a range of systematic effects such as the impact of neighbour-exclusion bias on the measured tomographic cosmic shear signal. For surveys like KiDS and DES, where the rejection of neighbouring galaxies occurs within ~2 arcseconds, we show that the measured cosmic shear signal will be biased low, but by less than a percent on the angular scales that are typically used in cosmic shear analyses. The amplitude of the neighbour-exclusion bias doubles in deeper, LSST-like data. The simulation products described in this paper are made available at http://slics.roe.ac.uk/.
Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear
Submitted in A&A
Abstract:
Cosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×2pt approach. Such biases can be as large as 5σ-equivalent when assuming an underlying ΛCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1σ.