Head-to-Toe Measurement of El Gordo: Improved Analysis of the Galaxy Cluster ACT-CL J0102-4915 with New Wide-field Hubble Space Telescope Imaging Data

The Astrophysical Journal, Volume 923, Issue 1, id.101, 20 pp.

Authors:

Kim, Jinhyub; Jee, M. James; Hughes, John P.; Yoon, Mijin; HyeongHan, Kim; Menanteau, Felipe; Sifón, Cristóbal; Hovey, Luke; Arunachalam, Prasiddha

Abstract:

We present an improved weak-lensing (WL) study of the high-z (z = 0.87) merging galaxy cluster ACT-CL J0102-4915 ("El Gordo") based on new wide-field Hubble Space Telescope imaging data. The new imaging data cover the ~3.5 × ~3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the ~2σ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro-Frenk-White (NFW) halos without employing mass-concentration relations. The masses are MNW200c=9.9+2.1−2.2× 1014 and MSE200c=6.5+1.9−1.4× 1014 M ⊙ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong-lensing results. This discrepancy is attributed to the use of extrapolation in strong-lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be M200c=2.13+0.25−0.23× 1015 M ⊙, which is ~23% lower than our previous WL result [M 200c = (2.76 ± 0.51) × 1015 M ⊙]. Our updated mass is a more direct measurement, since we are not extrapolating to R 200c as in all previous studies. The new mass is compatible with the current ΛCDM cosmology.

KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear

Authors:

S Joudaki, H Hildebrandt, D Traykova, Ne Chisari, C Heymans, A Kannawadi, K Kuijken, Ah Wright, M Asgari, T Erben, H Hoekstra, B Joachimi, L Miller, T Tröster, JL van den Busch

Abstract:

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8 \sigma$ reduction in the DES-inferred value for $S_8$. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5\sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.

KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Authors:

H Hildebrandt, F Köhlinger, JLVD Busch, B Joachimi, C Heymans, A Kannawadi, AH Wright, M Asgari, C Blake, H Hoekstra, S Joudaki, K Kuijken, LANCE Miller, CB Morrison, T Tröster, A Amon, M Archidiacono, S Brieden, A Choi, JTAD Jong, T Erben, B Giblin, A Mead, JA Peacock, M Radovich, P Schneider, C Sifón, M Tewes

Abstract:

We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and - most importantly - solidify our knowledge of the redshift distributions of the sources. Based on a flat $\Lambda$CDM model we find $S_8\equiv\sigma_8\sqrt{\Omega_{\rm m}/0.3}=0.737_{-0.036}^{+0.040}$ in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with $S_8$ differing by $2.3\sigma$. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The COSMOS-2015-calibrated KiDS redshift distributions are however discrepant with the results from our extensive spectroscopic calibration sample and the distributions recovered using angular clustering measurements, which we deem more reliable. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys.

Method for automatically detecting objects of predefined size within an image

9/202,060

Abstract:

The digital representation of the image is sequentially subjected to the following steps: (i) applying the Fourier transform to the original image; (ii) defining a critical Fourier wavelength equal to the predefined size of the objects; (iii) applying one of the techniques of entropy maximization or cross-entropy minimization to the original image to create the new image wherein (a) the amplitudes and the phases of the Fourier components of the new image with wavelengths that are shorter than the critical Fourier wavelength are substantially the same as the amplitudes and the phases of the Fourier components of the original image, and wherein (b) for the amplitudes and the phases of Fourier components having wavelengths that are longer than the critical wavelength, new values are estimated so that either image cross-entropy is minimized or image entropy is maximized.

Multiwavelength view of SPT-CL J2106-5844. The radio galaxies and the thermal and relativistic plasmas in a massive galaxy cluster merger at z ≃ 1.13

Astronomy & Astrophysics, Volume 650, id.A153, 18 pp.

Authors:

Di Mascolo, Luca; Mroczkowski, Tony; Perrott, Yvette; Rudnick, Lawrence; James Jee, M.; HyeongHan, Kim; Churazov, Eugene; Collier, Jordan D.; Diego, Jose M.; Hopkins, Andrew M.; Kim, Jinhyub; Koribalski, Bärbel S.; Marvil, Joshua D.; van der Burg, Remco; West, Jennifer L.

Abstract:

Context. SPT-CL J2106-5844 is among the most massive galaxy clusters at z > 1 yet discovered. While initially used in cosmological tests to assess the compatibility with Λ Cold Dark Matter cosmology of such a massive virialized object at this redshift, more recent studies indicate SPT-CL J2106-5844 is undergoing a major merger and is not an isolated system with a singular, well-defined halo.
Aims: We use sensitive, high spatial resolution measurements from the Atacama Large Millimeter/Submillimeter Array (ALMA) and Atacama Compact Array (ACA) of the thermal Sunyaev-Zeldovich (SZ) effect to reconstruct the pressure distribution of the intracluster medium in this system. These measurements are coupled with radio observations from the pilot survey for the Evolutionary Map of the Universe, using the Australian Square Kilometre Array Pathfinder (ASKAP), and the Australia Telescope Compact Array (ATCA) to search for diffuse nonthermal emission. Further, to better constrain the thermodynamic structure of the cluster, we complement our analysis with reprocessed archival Chandra observations.
Methods: We jointly fit the ALMA and ACA SZ data in uv-space using a Bayesian forward modeling technique. The ASKAP and low-frequency ATCA data are processed and imaged to specifically highlight any potential diffuse radio emission.
Results: In the ALMA and ACA SZ data, we reliably identify at high significance two main gas components associated with the mass clumps inferred from weak lensing. Our statistical test excludes at the ∼9.9σ level the possibility of describing the system with a single SZ component. While the components had been more difficult to identify in the X-ray data alone, we find that the bimodal gas distribution is supported by the X-ray hardness distribution. The EMU radio observations reveal a diffuse radio structure ∼400 kpc in projected extent along the northwest-southeast direction, indicative of strong activity from the active galactic nucleus within the brightest cluster galaxy. Interestingly, a putative optical star-forming filamentary structure detected in the HST image is in an excellent alignment with the radio structure, albeit on a smaller scale.