MaNGA DynPop – III. Stellar dynamics vs. stellar population relations in 6000 early-type and spiral galaxies: fundamental plane, mass-to-light ratios, total density slopes, and dark matter fractions

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:1 (2023) 706-730

Authors:

Kai Zhu, Shengdong Lu, Michele Cappellari, Ran Li, Shude Mao, Liang Gao, Junqiang Ge

Abstract:

We present dynamical scaling relations, combined with the stellar population properties, for a subsample of about 6000 nearby galaxies with the most reliable dynamical models extracted from the full Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) sample of 10 000 galaxies. We show that the inclination-corrected mass plane for both early-type galaxies (ETGs) and late-type galaxies (LTGs), which links dynamical mass, projected half-light radius Re, and the second stellar velocity moment σe within Re, satisfies the virial theorem and is even tighter than the uncorrected one. We find a clear parabolic relation between lg(M/L)e, the total mass-to-light ratio (M/L) within a sphere of radius Re, and lg σe, with the M/L increasing with σe and for older stellar populations. However, the relation for ETGs is linear and the one for the youngest galaxies is constant. We confirm and improve the relation between mass-weighted total density slopes γT and σe: γT become steeper with increasing σe until lg(σe/km s−1) ≈ 2.2 and then remain constant around γT ≈ 2.2. The γT –σe variation is larger for LTGs than ETGs. At fixed σe the total density profiles steepen with galaxy age and for ETGs. We find generally low dark matter fractions, median fDM(

The formation of cores in galaxies across cosmic time -- the existence of cores is not in tension with the LCDM paradigm

(2023)

Authors:

RA Jackson, S Kaviraj, SK Yi, S Peirani, Y Dubois, G Martin, JEG Devriendt, A Slyz, C Pichon, M Volonteri, T Kimm, K Kraljic

AGN Selection and Demographics: A New Age with JWST/MIRI

(2023)

Authors:

Jianwei Lyu, Stacey Alberts, George H Rieke, Irene Shivaei, Pablo G Perez-Gonzalez, Fengwu Sun, Kevin N Hainline, Stefi Baum, Nina Bonaventura, Andrew J Bunker, Eiichi Egami, Daniel J Eisenstein, Michael Florian, Zhiyuan Ji, Benjamin D Johnson, Jane Morrison, Marcia Rieke, Brant Robertson, Wiphu Rujopakarn, Sandro Tacchella, Jan Scholtz, Christopher NA Willmer

Cosmology from LOFAR Two-metre Sky Survey data release 2: angular clustering of radio sources

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:3 (2023) 6540-6568

Authors:

Cl Hale, Dj Schwarz, Pn Best, Sj Nakoneczny, David Alonso, D Bacon, L Böhme, N Bhardwaj, M Bilicki, S Camera, Cs Heneka, M Pashapour-Ahmadabadi, P Tiwari, J Zheng, Kj Duncan, Mj Jarvis, R Kondapally, M Magliocchetti, Hja Rottgering, Tw Shimwell

Abstract:

Covering ∼ 5600 deg2 to rms sensitivities of ∼70−100 μJy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of 0.5 ≤ θ < 5◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of bC = 2.14+0.22 −0.20 (assuming constant bias) and bE(z = 0) = 1.79+0.15 −0.14 (for an evolving model, inversely proportional to the growth factor), corresponding to bE = 2.81+0.24 −0.22 at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to bC = 2.02+0.17 −0.16 and bE(z = 0) = 1.67+0.12 −0.12 when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.

Simulating supermassive black hole mass measurements for a sample of ultramassive galaxies using ELT/HARMONI high-spatial-resolution integral-field stellar kinematics

Monthly Notices of the Royal Astronomical Society Oxford University Press 526:3 (2023) 3548-3569

Authors:

Dieu D Nguyen, Michele Cappellari, Miguel Pereira-Santaella

Abstract:

As the earliest relics of star formation episodes of the Universe, the most massive galaxies are the key to our understanding of the stellar population, cosmic structure, and supermassive black hole (SMBH) evolution. However, the details of their formation histories remain uncertain. We address these problems by planning a large survey sample of 101 ultramassive galaxies (z ≤ 0.3, |δ + 24°| < 45°, |b| > 8°), including 76  per cent ellipticals, 17  per cent lenticulars, and 7  per cent spirals brighter than MK ≤ −27 mag (stellar mass 2 × 1012M ≲ 5 × 1012 M) with ELT/HARMONI. Our sample comprises diverse galaxy environments ranging from isolated to dense-cluster galaxies. The primary goals of the project are to (1) explore the stellar dynamics inside galaxy nuclei and weigh SMBHs, (2) constrain the black hole scaling relations at the highest mass, and (3) probe the late-time assembly of these most massive galaxies through the stellar population and kinematical gradients. We describe the survey, discuss the distinct demographics and environmental properties of the sample, and simulate their HARMONI Iz-, Iz + J-, and H + K-band observations by combining the inferred stellar-mass models from Pan-STARRS observations, an assumed synthetic spectrum of stars, and SMBHs with masses estimated based on different black hole scaling relations. Our simulations produce excellent state-of-the-art integral field spectrography and stellar kinematics (ΔVrms ≲ 1.5 per cent) in a relatively short exposure time. We use these stellar kinematics in combination with the Jeans anisotropic model to reconstruct the SMBH mass and its error using a Markov chain Monte Carlo simulation. Thus, these simulations and modellings can be benchmarks to evaluate the instrument models and pipelines dedicated to HARMONI to exploit the unprecedented capabilities of ELT.