Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1175-1198

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Caroline Foster, Benne W Holwerda, Matt Jarvis, Steven Phillipps, Malgorzata Siudek, Jessica E Thorne, Rogier A Windhorst, Christian Wolf

Abstract:

We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 < z < 1, and stellar mass log10(M∗/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the profit code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼ 60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼ 30 per cent at z = 0.0 (representing ∼ 33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe's timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth.

A new look at local ultraluminous infrared galaxies: the atlas and radiative transfer models of their complex physics

(2022)

Authors:

A Efstathiou, D Farrah, J Afonso, DL Clements, E González-Alfonso, M Lacy, S Oliver, V Papadopoulou Lesta, C Pearson, D Rigopoulou, M Rowan-Robinson, HWW Spoon, A Verma, L Wang

MeerKAT uncovers the physics of an odd radio circle

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 513:1 (2022) 1300-1316

Authors:

Ray P Norris, JD Collier, Roland M Crocker, Ian Heywood, Peter Macgregor, L Rudnick, Stas Shabala, Heinz Andernach, Elisabete da Cunha, Jayanne English, Miroslav Filipović, Bärbel S Koribalski, Kieran Luken, Aaron Robotham, Srikrishna Sekhar, Jessica E Thorne, Tessa Vernstrom

Stellar and black hole assembly in z<0.3 infrared-luminous mergers: intermittent starbursts vs. super-Eddington accretion

(2022)

Authors:

Duncan Farrah, Andreas Efstathiou, Jose Afonso, Jeronimo Bernard-Salas, Joe Cairns, David L Clements, Kevin Croker, Evanthia Hatziminaoglou, Maya Joyce, Mark Lacy, Vianney Lebouteiller, Alix Lieblich, Carol Lonsdale, Seb Oliver, Chris Pearson, Sara Petty, Lura K Pitchford, Dimitra Rigopoulou, Michael Rowan-Robinson, Jack Runburg, Henrik Spoon, Aprajita Verma, Lingyu Wang

On the viability of determining galaxy properties from observations I: Star formation rates and kinematics

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3906-3924

Authors:

Kearn Grisdale, Laurence Hogan, Dimitra Rigopoulou, Niranjan Thatte, Miguel Pereira-Santaella, Julien Devriendt, Adrianne Slyz, Ismael García-Bernete, Yohan Dubois, Sukyoung K Yi, Katarina Kraljic

Abstract:

We explore how observations relate to the physical properties of the emitting galaxies by post-processing a pair of merging z ∼ 2 galaxies from the cosmological, hydrodynamical simulation NEWHORIZON, using LCARS (Light from Cloudy Added to RAMSES) to encode the physical properties of the simulated galaxy into H α emission line. By carrying out mock observations and analysis on these data cubes, we ascertain which physical properties of the galaxy will be recoverable with the HARMONI spectrograph on the European Extremely Large Telescope (ELT). We are able to estimate the galaxy’s star formation rate and dynamical mass to a reasonable degree of accuracy, with values within a factor of 1.81 and 1.38 of the true value. The kinematic structure of the galaxy is also recovered in mock observations. Furthermore, we are able to recover radial profiles of the velocity dispersion and are therefore able to calculate how the dynamical ratio varies as a function of distance from the galaxy centre. Finally, we show that when calculated on galaxy scales the dynamical ratio does not always provide a reliable measure of a galaxy’s stability against gravity or act as an indicator of a minor merger.