SDSS-IV MaStar: Theoretical Atmospheric Parameters for the MaNGA Stellar Library

(2021)

Authors:

Lewis Hill, Daniel Thomas, Claudia Maraston, Renbin Yan, Justus Neumann, Andrew Lundgren, Daniel Lazarz, Yan-Ping Chen, Michele Cappellari, Jon A Holtzman, Julie Imig, Katia Cunha, Guy Stringfellow, Dmitry Bizyaev, David R Law, Keivan G Stassun, Niv Drory, Michael Merrifield, Timothy C Beers

E(2) Equivariant Self-Attention for Radio Astronomy

ArXiv 2111.04742 (2021)

Authors:

Micah Bowles, Matthew Bromley, Max Allen, Anna Scaife

A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process

New Journal of Physics IOP Publishing 23 (2021) 115006

Authors:

B Kettle, D Hollatz, E Gerstmayr, Gm Samarin, A Alejo, S Astbury, C Baird, S Bohlen, M Campbell, C Colgan, D Dannheim, C Gregory, H Harsh, P Hatfield, J Hinojosa, Y Katzir, J Morton, Cd Murphy, A Nurnberg, J Osterhoff, G Pérez-Callejo, K Poder, Pp Rajeev, C Roedel, F Roeder, Fc Salgado, G Sarri, A Seidel, S Spannagel, C Spindloe, S Steinke, Mjv Streeter, Agr Thomas, C Underwood, R Watt, M Zepf, Sj Rose, Spd Mangles

Abstract:

We describe a laser–plasma platform for photon–photon collision experiments to measure fundamental quantum electrodynamic processes. As an example we describe using this platform to attempt to observe the linear Breit–Wheeler process. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser Wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon–photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors (SPDs). We present commissioning results from an experimental campaign using this laser–plasma platform for photon–photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the SPDs, and discuss the feasibility of this platform for the observation of the Breit–Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit–Wheeler and the Trident process, or eventually, photon–photon scattering.

Cross-checking SMBH mass estimates in NGC 6958 -- I: Stellar dynamics from adaptive optics-assisted MUSE observations

(2021)

Authors:

Sabine Thater, Davor Krajnović, Peter M Weilbacher, Dieu D Nguyen, Martin Bureau, Michele Cappellari, Timothy A Davis, Satoru Iguchi, Richard McDermid, Kyoko Onishi, Marc Sarzi, Glenn van de Ven

A deep radio view of the evolution of the cosmic star formation rate density from a stellar-mass-selected sample in VLA-COSMOS

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:3 (2021) 4291-4307

Authors:

Eliab D Malefahlo, Matt J Jarvis, Mario G Santos, Sarah V White, Nathan J Adams, Rebecca AA Bowler

Abstract:

We present the 1.4 GHz radio luminosity functions (RLFs) of galaxies in the Cosmic Evolution Survey (COSMOS) field, measured above and below the 5σ detection threshold, using a Bayesian model-fitting technique. The radio flux densities from Very Large Array (VLA)-COSMOS 3-GHz data are extracted at the position of stellar-mass-selected galaxies. We fit a local RLF model, which is a combination of active galactic nuclei and star-forming galaxies (SFGs), in 10 redshift bins with a pure luminosity evolution model. Our RLF exceeds previous determinations at low radio luminosities at z < 1.6 with the same radio data, due to our ability to directly constrain the knee and faint-end slope of the RLF. Beyond z ∼2, we find that the SFG part of the RLF exhibits a negative evolution (L∗ moves to lower luminosities) due to the decrease in low stellar-mass galaxies in our sample at high redshifts. From the RLF for SFGs, we determine the evolution in the cosmic star formation rate density (SFRD), which we find to be consistent with the established behaviour up to z ∼1 using far-infrared data, but exceeds that from the previous radio-based work for the reasons highlighted above. Beyond z ∼1.5 the cosmic SFRD declines. We note that the relation between radio luminosity and star formation rate is crucial in measuring the cosmic SFRD from radio data at z > 1.5. We investigate the effects of stellar mass on the total RLF by splitting our sample into low (108.5 ≤ M/M ≤ 1010) and high ($Mgt 10^{10}, mathrm{M}_{odot }$) stellar-mass subsets. We find that the SFRD is dominated by sources in the high stellar masses bin, at all redshifts.