The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z~8

(2022)

Authors:

M Curti, F D'Eugenio, S Carniani, R Maiolino, L Sandles, J Witstok, WM Baker, JS Bennett, JM Piotrowska, S Tacchella, S Charlot, K Nakajima, G Maheson, F Mannucci, A Amiri, S Arribas, F Belfiore, NR Bonaventura, AJ Bunker, J Chevallard, G Cresci, E Curtis-Lake, C Hayden-Pawson, N Kumari, I Laseter, TJ Looser, A Marconi, MV Maseda, GC Jones, J Scholtz, R Smit, H Ubler, IEB Wallace

Astrophysical gravitational-wave echoes from galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:3 (2022) 3299-3318

Authors:

László Gondán, Bence Kocsis

Abstract:

Galactic nuclei (GNs) are dense stellar environments abundant in gravitational-wave (GW) sources for the Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and Kamioka Gravitational Wave Detector (KAGRA). The GWs may be generated by stellar-mass black hole (BH) or neutron star mergers following gravitational bremsstrahlung, dynamical scattering encounters, Kozai–Lidov-type oscillations driven by the central supermassive black hole (SMBH), or gas-assisted mergers if present. In this paper, we examine a smoking gun signature to identify sources in GNs: the GWs scattered by the central SMBH. This produces a secondary signal, an astrophysical GW echo, which has a very similar time–frequency evolution as the primary signal but arrives after a time delay. We determine the amplitude and time-delay distribution of the GW echo as a function of source distance from the SMBH. Between ∼10 per cent and 90 per cent of the detectable echoes arrive within ∼(1--100)M6s after the primary GW for sources between 10 and 104 Schwarzschild radius, where M6=MSMBH,z/ (106M), and MSMBH, z is the observer-frame SMBH mass. The echo arrival times are systematically longer for high signal-to-noise ratio (SNR) primary GWs, where the GW echo rays are scattered at large deflection angles. In particular, ∼10 per cent--90 per cent of the distribution is shifted to ∼(5--1800)M6s for sources, where the lower limit of echo detection is 0.02 of the primary signal amplitude. We find that ∼5 per cent--30 per cent(⁠∼1 per cent--7 per cent⁠) of GW sources have an echo amplitude larger than 0.2–0.05 times the amplitude of the primary signal if the source distance from the SMBH is 50 (200) Schwarzschild radius. Non-detections can rule out that a GW source is near an SMBH.

Redshift and stellar mass dependence of intrinsic shapes of disc-dominated galaxies from COSMOS observations below z=1.0

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:3 (2022) 3603-3631

Authors:

K Hoffmann, C Laigle, Ne Chisari, P Tallada-Crespi, R Teyssier, Y Dubois, J Devriendt

Abstract:

The high abundance of disc galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their intrinsic 3D shape distributions in the COSMOS galaxy survey below redshift z = 1.0. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. Our tests reveal a moderate bias for the inferred average disc circularity and relative thickness, but a large bias on the dispersion of these quantities. Applying the reconstruction method on COSMOS data, we find variations of the average disc circularity and relative thickness with redshift of around ∼1 per cent and ∼10 per cent, respectively, which is comparable to the error estimates on these quantities. The average relative disc thickness shows a significant mass dependence which can be accounted for by the scaling of disc radius with galaxy mass. We conclude that our data provides no evidence for a strong dependence of the average circularity and absolute thickness of disc-dominated galaxies on redshift and mass that is significant with respect to the statistical uncertainties in our analysis. These findings are expected in the absence of disruptive merging or feedback events that would affect galaxy shapes. They hence support a scenario where present-day discs form early ( z > 1.0) and subsequently undergo a tranquil evolution in isolation. However, more data and a better understanding of systematics are needed to reaffirm our results.

EDGE: the puzzling ellipticity of Eridanus II’s star cluster and its implications for dark matter at the heart of an ultra-faint dwarf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 515:1 (2022) 185-200

Authors:

Matthew DA Orkney, Justin I Read, Oscar Agertz, Andrew Pontzen, Martin P Rey, Alex Goater, Ethan Taylor, Stacy Y Kim, Maxime Delorme

A numerical study of stellar discs in galactic nuclei

(2022)

Authors:

Taras Panamarev, Bence Kocsis