Echoes of the past: ultra-high energy cosmic rays accelerated by radio galaxies, scattered by starburst galaxies
Astronomy Domine: advancing science with a burning plasma
The Galaxy Activity, Torus, and Outflow Survey (GATOS): II. Torus and polar dust emission in nearby Seyfert galaxies
Abstract:
We compare high angular resolution mid-infrared (mid-IR) and Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared (far-IR) images of twelve nearby (median 21 Mpc) Seyfert galaxies selected from the Galaxy Activity, Torus, and Outflow Survey (GATOS). The mid-IR unresolved emission contributes more than 60% of the nuclear (diameters of 1.5″ ∼ 150 pc) emission in most galaxies. By contrast, the ALMA 870 μm continuum emission is mostlyresolved with a median diameter of 42 pc and typically along the equatorial direction of the torus (Paper I). The Eddington ratios and nuclear hydrogen column densities (NH) of half the sample are favorable to launching polar and/or equatorial dusty winds, according to numerical simulations. Six of these show mid-IR extended emission approximately in the polar direction as traced by the narrow line region and perpendicular to the ALMA emission. In a few galaxies, the nuclear NH might be too high to uplift large quantities of dusty material along the polar direction. Five galaxies have low NH and/or Eddington ratios and thus polar dusty winds are not likely. We generated new radiative transfer CAT3D-WIND disk+wind models and model images at 8, 12, and 700 μm. We tailored these models to the properties of the GATOS Seyferts in this work. At low wind-to-disk cloud ratios, the far-IR model images have disk- and ring-like morphologies. The characteristic “X”-shape associated with dusty winds is seen better in the far-IR at intermediate-high inclinations for the extended-wind configurations. In most of the explored models, the mid-IR emission mainly comes from the inner part of the disk and cone. Extended biconical and one-sided polar mid-IR emission is seen in extended-wind configurations and high wind-to-disk cloud ratios. When convolved to the typical angular resolution of our observations, the CAT3D-WIND model images reproduce qualitative aspects of the observed mid- and far-IR morphologies. However, low to intermediate values of the wind-to-disk ratio are required to account for the observed large fractions of unresolved mid-IR emission in our sample. This work and Paper I provide observational support for the torus+wind scenario. The wind component is more relevant at high Eddington ratios and/or active galactic nucleus luminosities, and polar dust emission is predicted at nuclear column densities of up to ∼1024 cm−2. The torus or disk component, on the other hand, prevails at low luminosities and/or Eddington ratios.
Kiloparsec-scale AGN outflows and feedback in merger-free galaxies
Abstract:
Recent observations and simulations have challenged the long-held paradigm that mergers are the dominant mechanism driving the growth of both galaxies and supermassive black holes (SMBH), in favour of non-merger (secular) processes. In this pilot study of merger-free SMBH and galaxy growth, we use Keck Cosmic Web Imager spectral observations to examine four low-redshift (0.043 < z < 0.073) disc-dominated ‘bulgeless’ galaxies hosting luminous active galactic nucleus (AGN), assumed to be merger-free. We detect blueshifted broadened [O III] emission from outflows in all four sources, which the [OIII]/Hβ ratios reveal are ionized by the AGN. We calculate outflow rates in the range 0.12−0.7 M⊙ yr−1, with velocities of 675−1710 km s−1, large radial extents of 0.6−2.4 kpc, and SMBH accretion rates of 0.02−0.07 M⊙ yr−1. We find that the outflow rates, kinematics, and energy injection rates are typical of the wider population of low-redshift AGN, and have velocities exceeding the galaxy escape velocity by a factor of ∼30, suggesting that these outflows will have a substantial impact through AGN feedback. Therefore, if both merger-driven and non-merger-driven SMBH growth lead to co-evolution, this suggests that co-evolution is regulated by feedback in both scenarios. Simulations find that bars and spiral arms can drive inflows to galactic centers at rates an order of magnitude larger than the combined SMBH accretion and outflow rates of our four targets. This work therefore provides further evidence that non-merger processes are sufficient to fuel SMBH growth and AGN outflows in disc galaxies.SDSS-IV MaNGA: Stellar M/L gradients and the M/L-colour relation in galaxies
Abstract:
The stellar mass-to-light ratio gradient in SDSS r-band ∇(M*/Lr) of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a MaNGA sample of 2051 galaxies with stellar masses ranging from 109 to 1012M⊙ released in SDSS DR15, we focus on face-on galaxies, without merger and bar signatures, and investigate the dependence of the 2D ∇(M*/Lr) on other galaxy properties, including M*/Lr-colour relationships by assuming a fixed Salpeter IMF as the mass normalization reference. The median gradient is ∇M*/Lr ∼ −0.1 (i.e. the M*/Lr is larger at the centre) for massive galaxies, becomes flat around M* ∼ 1010M⊙ and change sign to ∇M*/Lr ∼ 0.1 at the lowest masses. The M*/Lr inside a half-light radius increases with increasing galaxy stellar mass; in each mass bin, early-type galaxies have the highest value, while pure-disc late-type galaxies have the smallest. Correlation analyses suggest that the mass-weighted stellar age is the dominant parameter influencing the M*/Lr profile, since a luminosity-weighted age is easily affected by star formation when the specific star formation rate (sSFR) inside the half-light radius is higher than 10−3 Gyr−1. With increased sSFR gradient, one can obtain a steeper negative ∇(M*/Lr). The scatter in the slopes of M*/L-colour relations increases with increasing sSFR, for example, the slope for post-starburst galaxies can be flattened to 0.45 from the global value 0.87 in the M*/L versus g − r diagram. Hence converting galaxy colours to M*/L should be done carefully, especially for those galaxies with young luminosity-weighted stellar ages, which can have quite different star formation histories.