The ALPINE-ALMA [CII] survey

Astronomy & Astrophysics EDP Sciences 643 (2020) a8

Authors:

C Gruppioni, M Béthermin, F Loiacono, O Le Fèvre, P Capak, P Cassata, AL Faisst, D Schaerer, J Silverman, L Yan, S Bardelli, M Boquien, R Carraro, A Cimatti, M Dessauges-Zavadsky, M Ginolfi, S Fujimoto, NP Hathi, GC Jones, Y Khusanova, AM Koekemoer, G Lagache, BC Lemaux, PA Oesch, F Pozzi, DA Riechers, G Rodighiero, M Romano, M Talia, L Vallini, D Vergani, G Zamorani, E Zucca

The ALPINE-ALMA [C II] survey

Astronomy & Astrophysics EDP Sciences 643 (2020) a5

Authors:

M Dessauges-Zavadsky, M Ginolfi, F Pozzi, M Béthermin, O Le Fèvre, S Fujimoto, JD Silverman, GC Jones, L Vallini, D Schaerer, AL Faisst, Y Khusanova, Y Fudamoto, P Cassata, F Loiacono, PL Capak, L Yan, R Amorin, S Bardelli, M Boquien, A Cimatti, C Gruppioni, NP Hathi, E Ibar, AM Koekemoer, BC Lemaux, D Narayanan, PA Oesch, G Rodighiero, M Romano, M Talia, S Toft, D Vergani, G Zamorani, E Zucca

The ALPINE-ALMA [C II] survey

Astronomy & Astrophysics EDP Sciences 643 (2020) a3

Authors:

D Schaerer, M Ginolfi, M Béthermin, Y Fudamoto, PA Oesch, O Le Fèvre, A Faisst, P Capak, P Cassata, JD Silverman, Lin Yan, GC Jones, R Amorin, S Bardelli, M Boquien, A Cimatti, M Dessauges-Zavadsky, M Giavalisco, NP Hathi, S Fujimoto, E Ibar, A Koekemoer, G Lagache, BC Lemaux, F Loiacono, R Maiolino, D Narayanan, L Morselli, H Méndez-Hernàndez, F Pozzi, D Riechers, M Talia, S Toft, L Vallini, D Vergani, G Zamorani, E Zucca

The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at z ≈ 0.6 – 1.8

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

Authors:

S Gillman, Al Tiley, Am Swinbank, U Dudzevičiūtė, Rm Sharples, Ian Smail, Cm Harrison, Andrew J Bunker, Martin Bureau, M Cirasuolo, Georgios E Magdis, Trevor Mendel, John P Stott

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present an analysis of the chemical abundance properties of ≈650 star-forming galaxies at z ≈ 0.6 – 1.8. Using integral-field observations from the K - band Multi-Object Spectrograph (KMOS), we quantify the [N ii]/Hα emission-line ratio, a proxy for the gas-phase Oxygen abundance within the interstellar medium. We define the stellar mass – metallicity relation at z ≈ 0.6 – 1.0 and z ≈ 1.2 – 1.8 and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. Hα star-formation rate, Hα specific star-formation rate, rotation dominance, stellar continuum half-light radius and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing-corrected, metallicity gradient of ΔZ/ΔR= 0.002 ± 0.004 dex kpc−1, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star-formation rate, in agreement with an inside-out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of ΔZ/ΔR in our sample with numerical simulations and observations at z ≈ 0 – 3. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.</jats:p>

The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at z ≈ 0.6 – 1.8

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

Authors:

S Gillman, Al Tiley, Am Swinbank, U Dudzevičiūtė, Rm Sharples, Ian Smail, Cm Harrison, Andrew J Bunker, Martin Bureau, M Cirasuolo, Georgios E Magdis, Trevor Mendel, John P Stott

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present an analysis of the chemical abundance properties of ≈650 star-forming galaxies at z ≈ 0.6 – 1.8. Using integral-field observations from the K - band Multi-Object Spectrograph (KMOS), we quantify the [N ii]/Hα emission-line ratio, a proxy for the gas-phase Oxygen abundance within the interstellar medium. We define the stellar mass – metallicity relation at z ≈ 0.6 – 1.0 and z ≈ 1.2 – 1.8 and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. Hα star-formation rate, Hα specific star-formation rate, rotation dominance, stellar continuum half-light radius and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing-corrected, metallicity gradient of ΔZ/ΔR= 0.002 ± 0.004 dex kpc−1, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star-formation rate, in agreement with an inside-out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of ΔZ/ΔR in our sample with numerical simulations and observations at z ≈ 0 – 3. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.</jats:p>