Multifrequency observations of SGR J1935+2154

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5367-5384

Authors:

M Bailes, CG Bassa, G Bernardi, S Buchner, M Burgay, M Caleb, AJ Cooper, G Desvignes, PJ Groot, I Heywood, F Jankowski, R Karuppusamy, M Kramer, M Malenta, G Naldi, M Pilia, G Pupillo, KM Rajwade, L Spitler, M Surnis, BW Stappers, A Addis, S Bloemen, MC Bezuidenhout, G Bianchi, DJ Champion, W Chen, LN Driessen, M Geyer, K Gourdji, JWT Hessels, VI Kondratiev, M Klein-Wolt, E Körding, R Le Poole, K Liu, ME Lower, AG Lyne, A Magro, V McBride, MB Mickaliger, V Morello, A Parthasarathy, K Paterson, BBP Perera, DLA Pieterse, Z Pleunis, A Possenti, A Rowlinson, M Serylak, G Setti, M Tavani, RAMJ Wijers, S ter Veen, V Venkatraman Krishnan, P Vreeswijk, PA Woudt

The properties of polycyclic aromatic hydrocarbons in galaxies: constraints on PAH sizes, charge and radiation fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 504:4 (2021) 5287-5300

Authors:

D Rigopoulou, M Barale, Dc Clary, X Shan, A Alonso-Herrero, I Garcia-Bernete, L Hunt, B Kerkeni, M Pereira-Santaella, Pf Roche

Abstract:

Based on theoretical spectra computed using Density Functional Theory we study the properties of polycyclic aromatic hydrocarbons (PAH). In particular using bin-average spectra of PAH molecules with varying number of carbons we investigate how the intensity of the mid-infrared emission bands, 3.3, 6.2, 7.7, and 11.3 $\mu$m, respond to changes in the number of carbons, charge of the molecule, and the hardness of the radiation field that impinges the molecule. We confirm that the 6.2/7.7 band ratio is a good predictor for the size of the PAH molecule (based on the number of carbons present). We also investigate the efficacy of the 11.3/3.3 ratio to trace the size of PAH molecules and note the dependence of this ratio on the hardness of the radiation field. While the ratio can potentially also be used to trace PAH molecular size, a better understanding of the impact of the underlying radiation field on the 3.3 $\mu$m feature and the effect of the extinction on the ratio should be evaluated. The newly developed diagnostics are compared to band ratios measured in a variety of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. We demonstrate that the band ratios can be used to probe the conditions of the interstellar medium in galaxies and differentiate between environments encountered in normal star forming galaxies and active galactic nuclei. Our work highlights the immense potential that PAH observations with the James Webb Space Telescope will have on our understanding of the PAH emission itself and of the physical conditions in galaxies near and far.

Unraveling the origin of magnetic fields in galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 504:2 (2021) 2517–2534

Authors:

Sergio Martin-Alvarez, Harley Katz, Debora Sijacki, Julien Devriendt, Adrianne Slyz

Abstract:

Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out whether magnetic fields observed in galaxies were generated in the early Universe or are of astrophysical nature. Motivated by this, we use our magnetic tracer algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy down to z ∼ 2–1 in four scenarios: magnetized solely by primordial magnetic fields, magnetized exclusively by supernova (SN)-injected magnetic fields, and two combined primordial + SN magnetization cases. We find that once primordial magnetic fields with a comoving strength B0 > 10−12 G are considered, they remain the primary source of galaxy magnetization. Our magnetic tracers show that, even combined with galactic sources of magnetization, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic medium and intergalactic medium can be used to probe B0 without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.

Extremely deep 150 MHz source counts from the LoTSS Deep Fields

Astronomy and Astrophysics EDP Sciences 648 (2021) A5

Authors:

S Mandal, I Prandoni, Mj Hardcastle, Tw Shimwell, Ht Intema, C Tasse, Rj van Weeren, H Algera, Kl Emig, Hja Roettgering, Dj Schwarz, Tm Siewert, Pn Best, M Bonato, M Bondi, Mj Jarvis, R Kondapally, Sk Leslie, Vh Mahatma, J Sabater, E Retana-Montenegro, Wl Williams

Abstract:

With the advent of new generation low-frequency telescopes, such as the LOw Frequency ARray (LOFAR), and improved calibration techniques, we have now started to unveil the subgigahertz radio sky with unprecedented depth and sensitivity. The LOFAR Two Meter Sky Survey (LoTSS) is an ongoing project in which the whole northern radio sky will be observed at 150 MHz with a sensitivity better than 100 Jy beam1 at a resolution of 600. Additionally, deeper observations are planned to cover smaller areas with higher sensitivity. The Lockman Hole, the Boötes, and the Elais-N1 regions are among the most well known northern extra-galactic fields and the deepest of the LoTSS Deep Fields so far. We exploited these deep observations to derive the deepest radio source counts at 150 MHz to date. Our counts are in broad agreement with those from the literature and show the well known upturn at 1 mJy, mainly associated with the emergence of the star-forming galaxy population. More interestingly, our counts show, for the first time a very pronounced drop around S-2 mJy, which results in a prominent “bump” at sub-mJy flux densities. Such a feature was not observed in previous counts’ determinations (neither at 150MHz nor at a higher frequency). While sample variance can play a role in explaining the observed discrepancies, we believe this is mostly the result of a careful analysis aimed at deblending confused sources and removing spurious sources and artifacts from the radio catalogs. This “drop and bump” feature cannot be reproduced by any of the existing state-of-the-art evolutionary models, and it appears to be associated with a deficiency of active galactic nuclei (AGN) at an intermediate redshift (1 < z < 2) and an excess of low-redshift (z < 1) galaxies and/or AGN.

The LOFAR Two-Meter Sky Survey: Deep Fields Data Release 1 I. Direction-dependent calibration and imaging

Astronomy and Astrophysics EDP Sciences 648:2021 (2021) A1

Authors:

C Tasse, T Shimwell, Mj Hardcastle, Sp O'Sullivan, R van Weeren, Pn Best, L Bester, B Hugo, O Smirnov, J Sabater, G Calistro-Rivera, F de Gasperin, Lk Morabito, H Roettgering, Wl Williams, M Bonato, M Bondi, A Botteon, M Brueggen, G Brunetti, Kt Chyzy, Ma Garrett, G Guerkan, Mj Jarvis, R Kondapally, S Mandal, I Prandoni, A Repetti, E Retana-Montenegro, Dj Schwarz, A Shulevski, Y Wiaux

Abstract:

The Low Frequency Array (LOFAR) is an ideal instrument to conduct deep extragalactic surveys. It has a large field of view and is sensitive to large-scale and compact emission. It is, however, very challenging to synthesize thermal noise limited maps at full resolution, mainly because of the complexity of the low-frequency sky and the direction dependent effects (phased array beams and ionosphere). In this first paper of a series, we present a new calibration and imaging pipeline that aims at producing high fidelity, high dynamic range images with LOFAR High Band Antenna data, while being computationally efficient and robust against the absorption of unmodeled radio emission. We apply this calibration and imaging strategy to synthesize deep images of the Boötes and Lockman Hole fields at ~150 MHz, totaling ~80 and ~100 h of integration, respectively, and reaching unprecedented noise levels at these low frequencies of â 30 and â 23 μJy beam-1 in the inner ~3 deg2. This approach is also being used to reduce theâ» LOTSS-wide data for the second data release.