K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at $z \approx 0.2$-$0.6$
(2020)
How primordial magnetic fields shrink galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 495:4 (2020) 4475-4495
Abstract:
As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter remain below current observational upper limits. To understand how such magnetic fields would affect the global morphological and dynamical properties of galaxies, we use a suite of high-resolution constrained transport magnetohydrodynamic cosmological zoom simulations where we vary the initial magnetic field strength and configuration along with the prescription for stellar feedback. We find that strong primordial magnetic fields delay the onset of star formation and drain the rotational support of the galaxy, diminishing the radial size of the galactic disc and driving a higher amount of gas towards the centre. This is also reflected in mock UVJ observations by an increase in the light profile concentration of the galaxy. We explore the possible mechanisms behind such a reduction in angular momentum, focusing on magnetic braking. Finally, noticing that the effects of primordial magnetic fields are amplified in the presence of stellar feedback, we briefly discuss whether the changes we measure would also be expected for galactic magnetic fields of non-primordial origin.K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at z ≈ 0.2-0.6
Monthly Notices of the Royal Astronomical Society Oxford University Press (2020)
Abstract:
We present the KMOS-CLASH (K-CLASH) survey, a K-band Multi-Object Spectrograph (KMOS) survey of the spatially-resolved gas properties and kinematics of 191 (predominantly blue) Hα-detected galaxies at 0.2 ≲ z ≲ 0.6 in field and cluster environments. K-CLASH targets galaxies in four Cluster Lensing And Supernova survey with Hubble (CLASH) fields in the KMOS IZ-band, over 7′ radius (≈2–3 Mpc) fields-of-view. K-CLASH aims to study the transition of star-forming galaxies from turbulent, highly star-forming disc-like and peculiar systems at z ≈ 1–3, to the comparatively quiescent, ordered late-type galaxies at z ≈ 0, and to examine the role of clusters in the build-up of the red sequence since z ≈ 1. In this paper, we describe the K-CLASH survey, present the sample, and provide an overview of the K-CLASH galaxy properties. We demonstrate that our sample comprises star-forming galaxies typical of their stellar masses and epochs, residing both in field and cluster environments. We conclude K-CLASH provides an ideal sample to bridge the gap between existing large integral-field spectroscopy surveys at higher and lower redshifts. We find that star-forming K-CLASH cluster galaxies at intermediate redshifts have systematically lower stellar masses than their star-forming counterparts in the field, hinting at possible “downsizing” scenarios of galaxy growth in clusters at these epochs. We measure no difference between the star-formation rates of Hα-detected, star-forming galaxies in either environment after accounting for stellar mass, suggesting that cluster quenching occurs very rapidly during the epochs probed by K-CLASH, or that star-forming K-CLASH galaxies in clusters have only recently arrived there, with insufficient time elapsed for quenching to have occured.X-ray-line coincidence photopumping in a potassium-chlorine mixed plasma
Physical Review A American Physical Society (APS) 101:5 (2020) 053431