ASKAP commissioning observations of the GAMA 23 field

Publications of the Astronomical Society of Australia Cambridge University Press 36 (2019) e024

Authors:

Denis A Leahy, AM Hopkins, RP Norris, J Marvil, JD Collier, EN Taylor, JR Allison, C Anderson, M Bell, M Bilicki, J Bland-Hawthorn, S Brough, MJI Brown, S Driyer, G Gurkan, L Haryey-Smith, I Heywood, BW Holwerda, J Liske, AR Lopez-Sanchez, D McConnell, A Moffett, MS Owers, KA Pimbblet, W Raja, N Seymour, MA Voronkov, L Wang

Abstract:

We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ∼48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ∼39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ∼0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ∼30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (∼6%) to have an AGN than radio quiet galaxies (∼1%), but the majority of AGN are not detected in radio at this sensitivity.

Discovery of a giant and luminous Lya+CIV+HeII nebula at z=3.326 with extreme emission line ratios

(2019)

Authors:

R Marques-Chaves, I Pérez-Fournon, M Villar-Martín, R Gavazzi, D Riechers, D Rigopoulou, J Wardlow, A Cabrera-Lavers, DL Clements, L Colina, A Cooray, D Farrah, RJ Ivison, C Jiménez-Ángel, P Martínez-Navajas, H Nayyeri, S Oliver, A Omont, D Scott, Y Shu

An HI absorption distance to the black hole candidate X-ray binary MAXI J1535-571

Monthly Notices of the Royal Astronomical Society Oxford University Press 488:1 (2019) L129-L133

Authors:

J Chauhan, JCA Miller-Jones, GE Anderson, W Raja, A Bahramian, A Hotan, B Indermuehle, M Whiting, James Allison, C Anderson, J Bunton, B Koribalski, E Mahony

Population estimates for electromagnetically distinguishable supermassive binary black holes

Astrophysical Journal American Astronomical Society 879:2 (2019) 110

Authors:

JH Krolik, M Volonteri, Y Dubois, Julien Devriendt

Abstract:

Distinguishing the photon output of an accreting supermassive black hole binary system from that of a single supermassive black hole accreting at the same rate is intrinsically difficult because the majority of the light emerges from near the innermost stable orbits of the black holes. However, there are two possible signals that can distinctively mark binaries, both arising from the gap formed in circumbinary accretion flows inside approximately twice the binary separation. One of these is a "notch" cut into the thermal spectra of these systems in the IR/optical/UV, the other a periodically varying excess hard X-ray luminosity whose period is of order the binary orbital period. Using data from detailed galaxy evolution simulations, we estimate the distribution function in mass, mass ratio, and accretion rate for accreting supermassive binary black holes (SMBBHs) as a function of redshift and then transform this distribution function into predicted source counts for these two potential signals. At flux levels >~10−13 erg cm−2 s−1, there may be ~O(102) such systems in the sky, mostly in the redshift range 0.5 <~ z <~ 1. Roughly 10% should have periods short enough (<~5 yr) to detect the X-ray modulation; this is also the period range accessible to Pulsar Timing Array observations.

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Nature Reviews Physics Springer Nature 1:7 (2019) 450-462

Authors:

Brant E Robertson, Manda Banerji, Sarah Brough, Roger L Davies, Henry C Ferguson, Ryan Hausen, Sugata Kaviraj, Jeffrey A Newman, Samuel J Schmidt, J Anthony Tyson, Risa H Wechsler