New Horizon: On the origin of the stellar disk and spheroid of field galaxies at $z=0.7$

(2019)

Authors:

Min-Jung Park, Sukyoung K Yi, Yohan Dubois, Christophe Pichon, Taysun Kimm, Julien Devriendt, Hoseung Choi, Marta Volonteri, Sugata Kaviraj, Sebastien Peirani

Black hole mergers from quadruples

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

Giacomo Fragione, Bence Kocsis

Abstract:

With the hundreds of merging binary black hole (BH) signals expected to be detected by LIGO/Virgo, LISA and other instruments in the next few years, the modeling of astrophysical channels that lead to the formation of compact-object binaries has become of fundamental importance. In this paper, we carry out a systematic statistical study of quadruple BHs consisting of two binaries in orbit around their center of mass, by means of high-precision direct $N$-body simulations including Post-Newtonian (PN) terms up to 2.5PN order. We found that most merging systems have high initial inclinations and the distributions peak at $\sim 90^\circ$ as for triples, but with a more prominent broad distribution tail. We show that BHs merging through this channel have a significant eccentricity in the LIGO band, typically much larger than BHs merging in isolated binaries and in binaries ejected from star clusters, but comparable to that of merging binaries formed via the GW capture scenario in clusters, mergers in hierarchical triples, or BH binaries orbiting intermediate-mass black holes in star clusters. We show that the merger fraction can be up to $\sim 3$--$4\times$ higher for quadruples than for triples. Thus even if the number of quadruples is $20\%$--$25\%$ of the number of triples, the quadruple scenario can represent an important contribution to the events observed by LIGO/VIRGO.

Optical integral field spectroscopy of intermediate redshift infrared bright galaxies

Monthly Notices of the Royal Astronomical Societ Oxford University Press 486:4 (2019) 5621-5645

Authors:

Miguel Pereira-Santaella, Dimitra Rigopoulou, GE Magdis, Niranjan Thatte, A Alonso-Herrero, F Clarke, D Farrah, S García-Burillo, L Hogan, S Morris, M Rodrigues, J-S Huang, Matthias Tecza

Abstract:

The extreme infrared (IR) luminosity of local luminous and ultraluminous IR galaxies (U/LIRGs; 11 < logLIR/L < 12 and logLIR/L > 12, respectively) is mainly powered by star formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, dominate the star formation rate (SFR) density, and a fraction of them are found to be normal disc galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H α + [N II] observations of a sample of nine intermediate-z (0.2

Transforming education with the Timepix detector - Ten years of CERN@school

Radiation Measurements Elsevier BV (2019) 106090

Authors:

B Parker, L Thomas, E Rushton, P Hatfield

Galaxy Zoo: unwinding the winding problem – observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 1808-1820

Authors:

KL Masters, Christopher Lintott, RE Hart, SJ Kruk, Rebecca J Smethurst, K Casteels, WC Keel, BD Simmons, Stanescu, J Tate, S Tomi

Abstract:

We use classifications provided by citizen scientists though Galaxy Zoo to investigate the correlation between bulge size and arm winding in spiral galaxies. Whilst the traditional spiral sequence is based on a combination of both measures, and is supposed to favour arm winding where disagreement exists, we demonstrate that, in modern usage, the spiral classifications Sa–Sd are predominantly based on bulge size, with no reference to spiral arms. Furthermore, in a volume limited sample of galaxies with both automated and visual measures of bulge prominence and spiral arm tightness, there is at best a weak correlation between the two. Galaxies with small bulges have a wide range of arm winding, while those with larger bulges favour tighter arms. This observation, interpreted as revealing a variable winding speed as a function of bulge size, may be providing evidence that the majority of spiral arms are not static density waves, but rather wind-up over time. This suggests the ‘winding problem’ could be solved by the constant reforming of spiral arms, rather than needing a static density wave. We further observe that galaxies exhibiting strong bars tend to have more loosely wound arms at a given bulge size than unbarred spirals. This observations suggests that the presence of a bar may slow the winding speed of spirals, and may also drive other processes (such as density waves) that generate spiral arms. It is remarkable that after over 170 years of observations of spiral arms in galaxies our understanding of them remains incomplete.