Black hole mergers from an evolving population of globular clusters

Phys. Rev. Lett. 121 (2018) 161103-161103

Authors:

Giacomo Fragione, Bence Kocsis

Abstract:

The high rate of black hole (BH) mergers detected by LIGO/Virgo opened questions on their astrophysical origin. One possibility is the dynamical channel, in which binary formation and hardening is catalyzed by dynamical encounters in globular clusters (GCs). Previous studies have shown that the BH merger rate from the present day GC density in the Universe is lower than the observed rate. In this \textit{Letter}, we study the BH merger rate by accounting for the first time for the evolution of GCs within their host galaxies. The mass in GCs was initially $\sim 8\times$ higher, which decreased to its present value due to evaporation and tidal disruption. Many BH binaries that were ejected long before their merger, originated in GCs that no longer exist. We find that the comoving merger rate in the dynamical channel from GCs varies between $18$ to $35\,{\rm Gpc}^{-3}\,{\rm yr}^{-1}$ between redshift $z=0.5$ to $2$, and the total rate is $1$, $5$, $24$ events per day within $z=0.5$, $1$, and $2$, respectively. The cosmic evolution and disruption of GCs systematically increases the present-day merger rate by a factor $\sim 2$ relative to isolated clusters. Gravitational wave detector networks offer an unique observational probe of the initial number of GC populations and their subsequent evolution across cosmic time.

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

(2018)

Authors:

Harley Katz, Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Taysun Kimm

High-redshift radio galaxies at low radio frequencies

ArXiv 1810.08119 (2018)

Authors:

A Saxena, HJA Rottgering

KROSS–SAMI: a direct IFS comparison of the Tully–Fisher relation across 8 Gyr since z ≈ 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:2 (2018) 2166-2188

Authors:

AL Tiley, Martin Bureau, L Cortese, CM Harrison, HL Johnson, JP Stott, AM Swinbank, I Smail, D Sobral, Andrew J Bunker, K Glazebrook, RG Bower, D Obreschkow, JJ Bryant, MJ Jarvis, J Bland-Hawthorn, G Magdis, AM Medling, SM Sweet, C Tonini, OJ Turner, RM Sharples, SM Croom, M Goodwin, IS Konstantopoulos

Abstract:

We construct Tully–Fisher relations (TFRs), from large samples of galaxies with spatially resolved H α emission maps from the K-band Multi-Object Spectrograph (KMOS) Redshift One Spectroscopic Survey (KROSS) at z ≈ 1. We compare these to data from the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph (SAMI) Galaxy Survey at z ≈ 0. We stringently match the data quality of the latter to the former, and apply identical analysis methods and sub-sample selection criteria to both to conduct a direct comparison of the absolute K-band magnitude and stellar mass TFRs at z ≈ 1 and 0. We find that matching the quality of the SAMI data to that of KROSS results in TFRs that differ significantly in slope, zero-point, and (sometimes) scatter in comparison to the corresponding original SAMI relations. These differences are in every case as large as or larger than the differences between the KROSS z ≈ 1 and matched SAMI z ≈ 0 relations. Accounting for these differences, we compare the TFRs at z ≈ 1 and 0. For disc-like, star-forming galaxies we find no significant difference in the TFR zero-points between the two epochs. This suggests the growth of stellar mass and dark matter in these types of galaxies is intimately linked over this ≈8 Gyr period.

KROSS-SAMI: A Direct IFS Comparison of the Tully-Fisher Relation Across 8 Gyr Since $z \approx 1$

(2018)

Authors:

AL Tiley, M Bureau, L Cortese, CM Harrison, HL Johnson, JP Stott, AM Swinbank, I Smail, D Sobral, AJ Bunker, K Glazebrook, RG Bower, D Obreschkow, JJ Bryant, MJ Jarvis, J Bland-Hawthorn, G Magdis, AM Medling, SM Sweet, C Tonini, OJ Turner, RM Sharples, SM Croom, M Goodwin, IS Konstantopoulos, NPF Lorente, JS Lawrence, J Mould, MS Owers, SN Richards