Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments
Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190
Abstract:
Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments
Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190
Abstract:
Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.A pilot survey for transients and variables with the Australian Square Kilometre Array Pathfinder
Monthly Notices of the Royal Astronomical Society Oxford University Press 478:2 (2018) 1784-1794
Abstract:
We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg2 area centred on the NGC 7232 galaxy group over eight epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9 per cent confidence. These nine sources displayed flux density variations with modulation indices m ≥ 0.1 above ourflux density limit of ∼1.5 mJy. They are identified to be compact active galactic nucleus (AGN)/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m > 0.5 over atime intervalof a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on time-scales of days and we place an upper limit ρt < 0.01 deg−2 with 95percent confidence for non-detections on near-daily time-scales. The future VAST-Wide survey with 36-ASKAP dishes will probe the transient phase space with similar cadence to our pilot survey, but better sensitivity, and will detect and monitor rarer brighter events.An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 476:1 (2018) 122-132
SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 476:1 (2018) 979-998