Gas Dynamics of a Luminous z = 6.13 Quasar ULAS J1319+0950 Revealed by ALMA High-resolution Observations

The Astrophysical Journal American Astronomical Society 845:2 (2017) 138

Authors:

Yali Shao, Ran Wang, Gareth C Jones, Chris L Carilli, Fabian Walter, Xiaohui Fan, Dominik A Riechers, Frank Bertoldi, Jeff Wagg, Michael A Strauss, Alain Omont, Pierre Cox, Linhua Jiang, Desika Narayanan, Karl M Menten

Calibrating photometric redshifts with intensity mapping observations

Physical Review D American Physical Society 96:4 (2017) 043515

Authors:

David Alonso, Pedro G Ferreira, Matthew Jarvis, K Moodley

Abstract:

Imaging surveys of galaxies will have a high number density and angular resolution yet a poor redshift precision. Intensity maps of neutral hydrogen will have accurate redshift resolution yet will not resolve individual sources. Using this complementarity, we show how the clustering redshifts approach proposed for spectroscopic surveys can also be used in combination with intensity mapping observations to calibrate the redshift distribution of galaxies in an imaging survey and, as a result, reduce uncertainties in photometric-redshift measurements. We show how the intensity mapping surveys to be carried out with the MeerKAT, HIRAX and SKA instruments can improve photometric-redshift uncertainties to well below the requirements of DES and LSST. The effectiveness of this method as a function of instrumental parameters, foreground subtraction and other potential systematic errors is discussed in detail.

Large sSynoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, Ferguson, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca AA Bowler, MN Bremer, CJ Conselice, J Davies, R Demarco, ME Dickinson, G Galaz, A Grazian, BW Holwerda, Matthew Jarvis, V Kasliwal, I Lacerna, J Loveday, P Marshall, E Merlin, NR Napolitano, TH Puzia, A Robotham, S Salim, M Sereno, GF Snyder, JP Stott, PB Tissera, N Werner, P Yoachim, KD Borne

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.

Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation: the impact of AGN feedback

Monthly Notices of the Royal Astronomical Society Oxford University Press 472:2 (2017) 2153-2169

Authors:

Sébastien Peirani, Yohan Dubois, Marta Volonteri, Julien Devriendt, Kevin Bundy, Joe Silk, Christophe Pichon, Sugata Kaviraj, Raphaël Gavazzi, Mélanie Habouzit

Abstract:

Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON-NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ~ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ~ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity (“quasarmode”): the integrated innermass difference gapswith HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles (“radio mode”), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden respectively.On the galaxy side, the story differs noticeably.Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations. As both dark matter and stellar inner density profiles respond quite sensitively to the presence of a central AGN, there is hope that future observational determinations of these quantities can be used constrain AGN feedback models.

Galaxy Zoo: Major galaxy mergers are not a significant quenching pathway

Astrophysical Journal Institute of Physics 845:2 (2017) 145

Authors:

AK Weigel, K Schawinski, N Caplar, A Carpineti, RE Hart, S Kaviraj, WC Keel, Sandor J Kruk, Christopher Lintott, RC Nichol, BD Simmons, Rebecca J Smethurst

Abstract:

We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z ∼ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z ∼ 0 - 0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z ∼ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution.